Металлоискатель с принципом прием передача. Самый простой металлоискатель

Металлоискатель по принципу передача-прием — Теория

Термины «передача-прием» и «отраженный сигнал» в различных поисковых приборах обычно ассоциируются с методами типа импульсной эхо- и радиолокации, что является источником заблуждений, когда речь заходит о металлоискателях.

В отличие от различного рода локаторов, в металлоискателях рассматриваемого типа как передаваемый сигнал (излучаемый), так и принимаемый сигнал (отраженный) являются непрерывными, они существуют одновременно и совпадают по частоте.

Принцип действия

Принцип действия металлоискателей типа «передача-прием» заключается в регистрации сигнала, отраженного (или, как говорят, переизлученного) металлическим предметом (мишенью), см. , стр.225-228. Отраженный сигнал возникает вследствие воздействия на мишень переменного магнитного поля передающей (излучающей) катушки металлоискателя. Таким образом, прибор данного типа подразумевает наличие как минимум двух катушек, одна из которых является передающей, а другая приемной.

Основная принципиальная проблема, которая решается в металлоискателях данного типа, заключается в таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит нулевой сигнал в приемной катушке (или в системе приемных катушек). Таким образом, необходимо предотвратить непосредственное воздействие излучающей катушки на приемную. Появление же вблизи катушек металлической мишени приведет к появлению сигнала в виде переменной э.д.с. в приемной катушке.

Схемы датчиков

Поначалу может показаться, что в природе существует всего два варианта взаимного расположения катушек, при котором не происходит непосредственной передачи сигнала из одной катушки в другую (см. рис.1 а и 16) — катушки с перпендикулярными и со скрещивающимися осями.

Рис. 1. Варианты взаимного расположения катушек датика металлоискателя по принципу «передача-прием «.

Более тщательное изучение проблемы показывает, что подобных различных систем датчиков металлоискателей может быть сколь угодно много, однако они будут содержать более сложные системы с количеством катушек больше двух, соответствующим образом включенных электрически. Например, на рис.1 в изображена система из одной излучающей (в центре) и двух приемных катушек, включенных встречно по сигналу, наводимому излучающей катушкой. Таким образом, сигнал на выходе системы приемных катушек в идеале равен нулю, так как наводимые в катушках э.д.с. взаимно компенсируются.

Особый интерес представляют системы датчиков с компланарными катушками (т.е. расположенными в одной плоскости). Это объясняется тем, что с помощью металлоискателей обычно проводят поиск предметов, находящихся в земле, а приблизить датчик на минимальное расстояние к поверхности земли возможно только в том случае, если его катушки компланарны. Кроме того такие датчики обычно компактны и хорошо вписываются в защитные корпуса типа «блина» или «летающей тарелки».

Основные варианты взаимного расположения компланарных катушек приведены на рис.2а и 26. В схеме на рис.2а взаимное расположение катушек выбрано таким, чтобы суммарный поток вектора магнитной индукции через поверхность, ограниченную приемной катушкой, равнялся нулю. В схеме рис.26 одна из катушек (приемная) скручена в виде «восьмерки», так что суммарная э.д.с., наводимая на половинки витков приемной катушки, расположенные в одном крыле «восьмерки», компенсирует аналогичную суммарную э.д.с., наводимую в другом крыле «восьмерки».

Рис. 2. Компланарные варианты взаимного расположения катушек металлоискателя по принципу «передача-прием «.

Возможны и другие разнообразные конструкции датчиков с компланарньми катушками, например рис.2в. Приемная катушка расположена внутри излучающей. Наводимая в приемной катушке э.д.с. компенсируется специальным трансформаторным устройством, отбирающим часть сигнала излучающей катушки.

Практические соображения

Чувствительность металлоискателя зависит, в первую очередь от его датчика. Для рассмотренных вариантов датчиков чувствительность определяется формулами (1.20) и (1.33). При оптимальной для каждого случая ориентации ориентации датчика на объект по углу крена y, она определяется одним и тем же коэффициентом K 4 и функциями нормированных координат F(X,Y) иG(X,Y). Для сравнения, в квадрате Х О[-4,4], Y О[-4,4], модули этих функций приведены в виде аксонометрического набора сечений в логарифмическом масштабе на рис.12 и рис.13.

Первое, что бросается в глаза — это ярко выраженные максимумы вблизи точек расположения катушек датчика (0,+1) и (0,-1). Максимумы функций F(X,Y) иG(X,Y) не представляют практического интереса и для удобства сравнения функций обрезаны по уровню 0(дБ). Из рисунков и из анализа функций F(X,Y) иG(X,Y) также видно, что в указанном квадрате модуль функции F практически везде немного превосходит модуль функции G, за исключением самых удаленных точек по углам квадрата и за исключением узкой области вблизи Х=0, где у функции F имеет место «овраг».

Асимптотическое поведение указанных функций вдали от начала координат можно проиллюстрировать при Y=0. Оказывается, что модуль функции F убывает с расстоянием пропорционально х^(-7), а модуль функции G — пропорционально х^(-6). К сожалению, преимущество функции G по чувствительности проявляется лишь на больших расстояниях, превышающих практический радиус действия металлоискателя. Одинаковые значения модулей F и G получаются при Х>>4,25.

Рис. 12. График функции F(X,Y).

Рис.13. График функции G(X,Y).

Очень важное практическое значение имеет «овраг» функцииF. Во-первых, он свидетельствует о том, что датчик системы катушек с перпендикулярными осями имеет минимальную (теоретически нулевую) чувствительность к металлическим предметам, расположенным на его продольной оси. Естественно, к этим предметам относятся и многие элементы конструкции самого датчика. Следовательно, отраженный от них бесполезный сигнал будет намного меньше, чем у датчика системы катушек со скрещивающимися осями. Последнее очень важно, учитывая, что отраженный сигнал от металлических элементов самого датчика может на несколько порядков превосходить полезный сигнал (ввиду близости этих элементов к катушкам датчика). Дело не в том, что бесполезный сигнал от металлических элементов конструкции датчика трудно скомпенсировать. Основная сложность заключается в малейших изменениях этих сигналов, которые обычно вызываются тепловыми и особенно механическими деформациями указанных элементов. Эти малейшие изменения могут быть уже сопоставимы с полезным сигналом, что приведет к неверным показаниям или ложным срабатываниям прибора. Во-вторых, если с помощью металлоискателя системы катушек с перпендикулярными осями некоторый небольшой объект уже обнаружен, то направление его точного местонахождения может быть легко «запеленговано» по нулевому значению сигнала металлоискателя при точной ориентации его продольной оси на объект (при любых ориентациях по крену). Учитывая, что площадь «захвата» датчика при поиске может составлять несколько квадратньк метров, последнее качество сис

темы катушек с перпендикулярными осями весьма полезно на практике (меньше бесполезных раскопок).

Следующая особенность графиков функцийF(X,Y) и G(X,Y) — наличие кольцеобразного «кратера» нулевой чувствительности, проходящего через центры катушек (окружность единичноо радиуса с центром в точке (0,0)). На практике эта особенность позволяет определять расстояние до небольших объектов. Если обнаружится, что на некотором конечном расстоянии отраженный сигнал зануляется (при оптимальной ориентации по крену) — значит, расстояние до объекта составляет половину базы прибора, то есть величину L/2.

Необходимо также отметить, что диаграммы направленности по углу крена y для датчиков металлоискателей с различным взаимным расположением катушек также различаются. На рис.14б приведена диаграмма направленности прибора с перпендикулярньми осями у катушек, а на рис.14а — со скрещивающимися. Очевидно, что вторая диаграмма более предпочтительна, так имеет меньшее количество зон нечувствительности по крену и меньшее количество лепестков.

Для того, чтобы оценить зависимость наведенного в приемной катушке напряжения от параметров металлоискателя и объекта, надо проанализировать выражение (1.19) для коэффициента К 4. Наведенное в приемной катушке напряжение пропорционально (L/2)^6. На величину L/2 нормируются и аргументы функций F и G, убывание которых происходит с 6-й — 7-й степенью расстояния. Поэтому, в первом приближении, при прочих равных условиях, чувствительность металлоискателя не зависит от его базы.


Диаграммы направленности по крену датчиков систем катушек:
— со скрещивающимися осями (а)
— с перпендикулярными осями (б).

Для того, чтобы проанализировать селективность металлоискателя, то есть его способность различать объекты, изготовленные из различных металлов или сплавов, необходимо обратиться к выражению (1.23). Металлоискатель может различать объекты по фазе отраженного сигнала. Для того, чтобы разрешающая способность прибора по типу ме

таллов была максимальной, необходимо соответствующим образом выбрать частоту сигнала излучающей катушки, так, чтобы фаза отраженного от объектов сигнала составляла около 45°. Это — середина диапазона возможных изменений фазы первого слагаемого выражения (1.23), и там крутизна фазочастотной характеристики максимальна. Второе слагаемое выражения (1.23) считаем нулевым, так как при поиске в первую очередь нас интересует селективность по цветным металлам — неферромагнетикам. Естественно, оптимальный выбор частоты сигнала подразумевает знание типового размера предполагаемых объектов. Практически во всех зарубежных промышленных металлоискателях в качестве такого размера заложен размер монеты. Оптимальная частота составляет:

При типовом диаметре монеты 25(мм) ее объем составляет около 10^(-6) (м^3), что по формуле (1.25) соответствует эквивалентному радиусу около 0,6(см). Отсюда получаем оптимальное значение частоты около 1(кГц) при проводимости материала монеты 20(н0м Ч м). В промышленных приборах частота обычно на порядок выше (по технологическим соображениям).

Выводы

1. По мнению автора, система катушек с перпендикулярными осями предпочтительнее для поиска кладов и реликвий, чем система катушек со скрещивающимися осями. При прочих равных условиях, первая система имеет чувствительность немного выше. Кроме того, с ее помощью гораздо проще определить («запеленговать») точное направление, в котором следует искать обнаруженный объект.

2. Рассмотренные системы катушек имеют важное свойство, позволяющее оценивать расстояние до небольших объектов по занулению отраженного сигнала при расстоянии до объекта, равном половине базы.

3. При прочих равных условиях (размеры и число витков катушек, чувствительность приемного тракта, величина тока и его частота в излучающей катушке), чувствительность металлоискателя по принципу «передача-прием» практически не зависит от его базы, то есть от расстояния между катушками.

Металлоискатель применяется для поисков различных типов металла. Но мало кто знает, как же он устроен. Разберемся, какие принципы лежат в работе металлоискателя, в чем его отличие от металлодетектора и какие типы металлоискателей известны.

Металлоискатель и металлодетектор: есть ли разница?

Строго говоря, оба эти понятия обозначают одно и то же. Зачастую, их используют как синонимы. Правда, в сознании говорящего и слушающего при произнесении слова «металлоискатель» чаще возникает картинка человека, ищущего клад в лесу с длинным инструментом с датчиком на конце. А в случае с «металлодетектором» сразу представляются магнитные рамки в аэропорту и люди со специальными ручными датчиками, реагирующими на металл. Как видим, для обывателя различие заключается только в представлении.

Если же обратиться к истокам, то будет ясно, что металлоискатель - это просто русский эквивалент английского термина «metal detector», а «металлодетектор», в таком случае» - всего лишь транслитерированный перевод.

Однако, в профессиональной среде русскоязычных людей, которые часто пользуются этими приборами существует представление о четком различии между ними. Металлодетектором называют недорогой прибор, способный лишь обнаружить наличие или же отсутствие металла в определенной среде. Соответственно, металлоискатель - это прибор похожего назначения, но его преимущество заключается в том, что с помощью него дополнительно возможно определить тип металлического объекта. Цена такого инструмента на несколько порядков выше. По целям эти приборы совпадают, однако характер их выполнения различен. Поэтому на вопрос «чем отличается металлоискатель от металлодетектора» можно ответить с полной уверенностью, что это различие лежит в сфере дополнительного функционала, оставляя при этом неизменными цели и задачи, относящиеся к такой технике.

Но для удобства будем придерживаться всем понятной точки зрения. Обозначим аппарат, использующийся для поиска в грунте или под водой термином «металлоискатель», а «металлодетекторами» будем называть ручные досмотровые и специальные арочные устройства, применяющиеся в работе различными охранными службами.

Как работает металлоискатель

Однозначно ответить на этот вопрос довольно сложно. Существует масса различных вариантов устройства этого прибора. И найти «свой» среди всего многообразия потенциальному покупателю бывает непросто.

Самый распространенный - электронный прибор, функционирующий на определенных частотах, способен обнаруживать металлические объекты соответственно заданным параметрам в так называемой нейтральной или же слабопроводящей среде. Понятно, что он реагирует на проводимость материалов, из которых изготовлены предметы. Прибор такой конструкции называется импульсным. Это когда излучаемый прибором и отраженный предметом сигналы передаются через некоторые доли секунд. Именно они и фиксируется техникой. Кратко описать принцип работы импульсного металлоискателя можно так: импульсы генератора тока, как правило, за миллисекунды поступают в излучающую катушку, где трансформируются в импульсы магнитной индукции. На импульсных составляющих генератора образуются резкие скачки напряжения. Они отражаются в приемной катушке (в более сложных типах устройств у одной катушки есть способность выполнять обе функции) за определенные промежутки времени. Потом сигналы поступают по каналу связи на блок обработки и понятными символами выводятся для последующего восприятия их человеком.

Но нужно быть внимательным, ведь у такого популярного типа техники существует ряд недостатков:

  1. Трудность дифференциации обнаруженных объектов по типу металла;
  2. Большая амплитуда напряжения;
  3. Техническая сложность коммутации и генерации;
  4. Наличие радиопомех.

Другие типы металлоискателей по принципу работы

Такие приборы состоят из большинства известных моделей. Некоторые из них уже сняты с производства, однако до сих пор применяются на практике.

  1. BFO (Beat Frequency Oscillation). В основе - подсчет и фиксация разницы частоты колебаний. В зависимости от типа металла (черного или цветного) частота то повышается, то понижается. Такие приборы теперь не выпускаются, они устарели. Но произведенные ранее модели все еще работают. Характеристики такого металлоискателя оставляют желать лучшего. У него небольшая глубина обнаружения, сильная зависимость результатов поиска от типа грунта (малоэффективен на кислых, минерализованных почвах), низкая чувствительность.
  2. TR (Transmitter Reciver). Оборудование типа «прием-передача». Также относится к устаревшим. Проблемы такие же, как и у предыдущего типа (не работает на минерализованных грунтах) за исключением глубины обнаружения. Она является довольно большой.
  3. VLF (Very Low Frequency). Зачастую такой аппарат сочетает две схемы действия: «прием-передачу» и низкочастотное исследование. В ходе работы прибор анализирует сигнал по фазам. Его преимущества в высокой чувствительности, способности искать черные и цветные металлы на глубине. Но вот объекты, залегающие у поверхности ему обнаружить значительно труднее.
  4. PI (Pulse Induction). В основе - процесс индукции. Принцип работы металлоискателя заключен в катушке. Она - это сердце датчика. Появление внутри электромагнитного поля посторонних токов от металлических предметов активизирует отраженный импульс. Он достигает катушки в виде электрического сигнала. При этом аппарат четко воспринимает минерализованную и соленую почву с металлами. Токи, от солей достигают датчика гораздо быстрее и не отображаются графически или звуковом. Такой металлоискатель считается наиболее чувствительным из всех. Для ведения поисков на морском дне - это самый эффективный вариант устройства.
  5. RF (Radio Frequency / RF two-box) . Представляет собой прибор «прием-передача», только работающий на высоких частотах. Имеет две катушки (катушка приема и соответственно, катушка передачи). В основе работы этого металлоискателя лежит нарушение индукционного баланса: катушка, работающая на прием, фиксирует сигнал, который отражается от объекта. Изначально этот сигнал был послан катушкой-передачи. Характеристики такого металлоискателя делают возможным его применение с целью поиска неглубоко находящихся месторождений руд, полезных ископаемых на больших глубинах или же обнаружения крупных предметов. По глубине пробивания не имеет себе равных (от 1 до 9 метров в зависимости от типа почвы). Часто используется в промышленности. Копатели и кладоискатели не оставляют его без внимания. Существенный минус такого прибора - это его неспособность к обнаружению мелких предметов типа монет.

Принцип работы металлоискателя для поиска цветного металла особо не отличается от остальных. Он также зависит от типа и конструкции аппарата. При правильной настройке можно обнаружить цветной металл. Различия между ним и черным состоят лишь в том, что вихревые токи, отражающиеся от предмета из цветного металла, затухают дольше.

Чем еще отличаются металлоискатели?

Помимо внутренней «начинки» различия между металлоискателями имеются и в других моментах. Во-первых, они представлены в разных ценовых категориях. Есть приборы более дешевые и массовые, есть и те, которые можно отнести к премиум-классу.

Также уже в описании металлоискателей видна разница в выводе информации для доступа к ней пользователя. Аппараты могут быть запрограммированные на отображение графического информирования (выводится на специальном дисплее), звуковыми устройствами, сообщающими об обнаружении или отсутствии объекта (отличаются тем, что издают разные частоты). В более дорогих моделях могут быть представлены дисплеи с целыми шкалами дискриминационных значений.

Отличается и сама информация. Например, самые недорогие модели просто сообщают пользователю о том, есть металл или нет. Аппараты чуть подороже определяют какой это металл - черный или цветной. Самые дорогие модели могут предоставить полную информацию: сведения о глубине предмета, вероятностное отношение в процентах относительно металла, тип объекта.

Все виды металлоискателей

Приборы различаются по : принципу работы, выполняемым задачам, примененным элементам. О принципах уже написано выше, поэтому посмотрим, какими они бывают по задачам:

1. Глубинный;

2. Грунтовой;

3. Магнитометр;

4. Миноискатель.

По элементам могут быть микропроцессорными и аналоговыми.

Про характеристики

Различные аппараты характеризуются вариативностью параметров.

Принцип действия металлоискателя и его рабочая частота - классифицирующие параметры. Определяют тип прибора, например, профессиональный или грунтовой. Чувствительностью определяется глубина. Целеуказание позволяет настраивать прибор на заданный размер цели. Тип металла вычисляет дискриминатор. Вес, тут все просто: тяжелым прибором неудобно пользоваться длительное время. Тип почвы указывается при балансировке показателей грунта.

Работа с металлоискателем. Особенности

Нужно предварительно изучить свой прибор, его слабые места. Не следует гнаться за самыми последними моделями. Если у пользователя нет элементарных навыков и понимания того, как аппарат устроен, то ему не поможет никакой даже самый «навороченный» металлоискатель.

В каждой ценовой категории есть свои лидеры. Их и нужно выбирать, так как это модели, проверенные поколениями кладоискателей. Умение работать с прибором достигается только практикой. Пробуя раз за разом, человек начинает правильно расшифровывать те сигналы, которые подает ему техника. А от правильной расшифровки зависит основной вопрос: копать или не копать?

Например, зная какие элементы установлены внутри вашего металлоискателя, можно точно понять как работать с металлоискателем. Если это катушка-моно, то ее электромагнитное излучение выглядит конусообразным. Следовательно, при поисках есть «слепые зоны». Чтобы их устранить, нужно следить за тем, чтобы каждый проход с прибором перекрывал на 50 % предыдущий. Зная такие мелочи, можно наиболее эффективно применять металлоискатель.

Работа с металлоискателем предполагает получение определенного результата. Для этого необходимо, чтобы металлоискатель отвечал некоторым простым, но совершенно необходимым требованиям:

  1. Принцип работы металлоискателя должен позволять ему чувствовать металлические предметы на максимальной глубине;
  2. Обязательно должно быть разделение на черный и цветной металл;
  3. На приборе должен быть установлен оперативный процессор, обеспечивающий быструю работу. Это важно для распознания двух близлежащих объектов.

Как же правильно работать с металлоискателем? Начать необходимо с настройки прибора. Как правило, если мы хотим найти какой-то определенный объект, то и настройки нужно устанавливать соответствующие. Но есть 2 общих правила, соблюдение которых точно будет полезно новичкам.

  1. Снизить пороговое значение по параметру чувствительности. Так как повышение этого показателя зачастую приводит к усилению помех, то новичкам лучше пожертвовать способностью прибора обнаруживать предметы, лежащие рядом, чтобы точнее локализовать какую-то одну цель.
  2. Использовать параметр дискриминации «все металлы».

Это были указаны только некоторые общие сведения относительно того, как правильно пользоваться металлоискателем. Остановимся на этом подробнее. Самое главное –никогда не спешить! Площадь поисков разбивается на зоны, участки. Каждый из них следует медленно, внимательно проходить. Улавливатель необходимо держать как можно ближе к земле; работа металлоискателем должна быть плавной, без рывков. Аккуратно водите прибором из стороны в сторону. Если в земле обнаружен металл, то, как правило, вы услышите звуковой сигнал: четкий - свидетельство обнаружения небольшого предмета правильной формы, нечеткий, прерывистый - форма обнаруженного объекта неправильная. Научиться определять размеры находки и глубину ее залегания по звуку можно только опытным путем. Тип найденного металла классифицируется по шкале (аппарат отражает электрический импульс, а процессор исходя из этих данных вычисляет плотность материала, из которого изготовлен предмет).

Есть два режима: динамический (основной) и статический, они влияют на то, как правильно работать металлоискателем Статический - это независимое перемещение катушки над объектом; применяется для точного определения центра цели. Исследование территории происходит по определенной схеме:

  1. Катушка должна быть параллельна земле;
  2. Важно сохранять постоянное расстояние между землей и катушкой;
  3. Делать маленькие шаги. Не пропускать участки!
  4. Скорость движения должна составлять около полуметра в секунду;
  5. Высота прибора над землей - 3 или 4 см.

Поиски ведутся в динамическом режиме. При обнаружении стабильного сигнала переключайте аппарат в статический режим: крестообразными движениями водите над предполагаемым местом; там, где сигнал приобретает максимальную громкость и копайте. Обратно переключите металлоискатель в динамический режим. Копайте на половину штыка, подрезая ровный квадратный или круглый ком. Если объект все еще находится в яме, копайте дальше. Из дерна извлекать находку лучше методом половинного деления. После завершения поисков обязательно укладывайте дерн обратно в яму! Теперь вы точно знаете, как пользоваться металлоискателем.

Немного о металлодетекторах

Принципы работы металлодетекторов абсолютно такие же, как и у металлоискателей, различия имеются только в средах использования и мощности катушки. Из-за этого эффективность металлодетекторов меньше, в грунте они бы ничего не смогли обнаружить. Основными видами металлодетекторов являются: ручной досмотровый (дальность обнаружения до 25 метров) и арочный (рамочный).

Коротко описать, как работает ручной металлодетектор, можно так: устройство абсолютно готово к работе при включении, настройка не требуется, при обнаружении металла импульс постоянного тока фиксируется, включается звук и индикация.

Б. СОЛОНЕНКО, г. Геническ Херсонской обл., Украина

Не будет преувеличением сказать, что металлоискатели неизменно привлекают внимание радиолюбителей. Немало таких приборов опубликовано и в журнале "Радио". Сегодня мы предлагаем читателям описание еще одной конструкции, созданной в кружке радиоконструирования Технической станции юных техников (см. статью о нем в "Радио", 2005, № 4, 5). Перед кружковцами была поставлена задача: разработать несложный в изготовлении прибор на доступной элементной базе, для налаживания которого достаточно одного мультиметра. Насколько это удалось ребятам, судить вам, читатели.

Предлагаемый металлоискатель работает по принципу "передача-прием". В качестве передатчика использован мультивибратор, а в качестве приемника - усилитель звуковой частоты (34). К выходу первого из этих устройств и входу второго подключены одинаковые по размерам и намоточным данным катушки,

Для того чтобы система из таких передатчика и приемника стала металлоискателем, их катушки необходимо расположить так, чтобы в отсутствие посторонних металлических предметов связь между ними практически отсутствовала, т. е. сигнал передатчика не попадал напрямую в приемник. Как известно, индуктивная связь между катушками минимальна, если их оси взаимно перпендикулярны. Если катушки передатчика и приемника расположить именно так, то сигнал передатчика в приемнике прослушиваться не будет. При появлении поблизости от этой сбалансированной системы металлического предмета в нем под действием переменного магнитного поля передающей катушки возникают так называемые вихревые токи и, как следствие, собственное магнитное поле, которое наводит в приемной катушке переменную ЭДС. Сигнал, принятый приемником, преобразуется телефонами в звук. Его громкость зависит от размеров предмета и расстояния до него.

Технические характеристики металлоискателя : рабочая частота - около 2 кГц; глубина обнаружения монеты диаметром 25 мм - около 9 см; железной и алюминиевой закаточных крышек - соответственно 23 и 25 см; стального и алюминиевого листов размерами 200x300 мм - 40 и 45 см; канализационного люка - 60 см.

Передатчик . Схема передатчика показана на рис. 1. Как упоминалось, это симметричный мультивибратор на транзисторах VT1, VT2. Частота генерируемых им колебаний определяется емкостью конденсаторов CI, С2 и сопротивлением резисторов R2, R3. Сигнал 34 с коллекторной нагрузки транзистора VT2 - резистора R4 - через разделительный конденсатор СЗ поступает на катушку L1, которая преобразует электрические колебания в переменное магнитное поле ЗЧ.


Рис.2

Приемник представляет собой трехкаскадный усилитель 34, выполненный по схеме, изображенной на рис. 2. На его входе включена такая же катушка L1, как и в передатчике. Выход усилителя нагружен включенными последовательно телефонами BF1.1, BF1.2.


Рис.3

Переменное магнитное поле передатчика, наведенное в металлическом предмете, воздействует на катушку приемника, в результате чего в ней возникает электрический ток частотой около 2 кГц. Через разделительный конденсатор С1 сигнал поступает на вход первого каскада усилителя, выполненного на транзисторе VT1. Усиленный сигнал с его нагрузки - резистора R2 - подается через разделительный конденсатор СЗ на вход второго каскада, собранного на транзисторе VT2. Сигнал с его коллектора через конденсатор С5 поступает на вход третьего каскада - эмиттерного повторителя на транзисторе VT3. Он усиливает сигнал по току и позволяет подключить в качестве нагрузки низ-коомные телефоны.

Чтобы уменьшить влияние температуры окружающей среды на стабильность работы усилителя, в первый и второй каскады введена отрицательная обратная связь по постоянному напряжению включением резистора R1 между коллектором и базой транзистора VT1 и резистора R3 между коллектором и базой VT2. Снижение усиления на частотах ниже 2 кГц достигнуто соответствующим выбором емкости разделительных конденсаторов С1, СЗ, на частотах выше этой частоты - введением в первый и второй каскады частотозависимой отрицательной обратной связи по переменному напряжению через конденсаторы С2 и С4. Эти меры позволили повысить помехоустойчивость приемника. Конденсатор С6 предотвращает самовозбуждение усилителя при увеличении внутреннего сопротивления батареи питания по мере ее разрядки.


Рис.4

Детали и конструкция . Детали передатчика и приемника размещены на печатных платах, изготовленных методом прорезания изолирующих дорожек на заготовках из односторонне фольгированного стеклотекстолита. Чертеж платы передатчика изображен на рис. 3, приемника - на рис. 4. Платы рассчитаны на применение резисторов МЛТ мощностью 0,125 или 0,25 Вт и конденсаторов К73-5 (С2, С4 в приемнике) и К73-17 остальные. Оксидный конденсатор С6 в приемнике - К50-35 или аналогичный зарубежного производства. Вместо указанных на схеме в передатчике можно использовать любые другие транзисторы серии КТ503, а в приемнике - транзисторы серии КТ315 с любым буквенным индексом или серии КТ3102 с индексами А-В. Применение последних предпочтительнее, так как у них меньше коэффициент шума, и сигнал от мелких предметов будет меньше маскироваться шумом усилителя. Выключатели SA1 могут быть любой конструкции, но желательно меньших размеров. Телефоны BF1, BF2 - малогабаритные вкладные, например, от аудиоплейера.

Катушки приемника и передатчика, как уже говорилось, одинаковы. Изготавливают их так. По углам прямоугольника размерами 115x75 мм в доску вбивают четыре гвоздя диаметром 2...2,5 и длиной 50...60 мм, предварительно надев на них поливинилхлоридные или полиэтиленовые трубки длиной 30...40 мм. На изолированные таким образом гвозди наматывают 300 витков провода ПЭВ-2 диаметром 0,12...0,14 мм. По завершении намотки витки обматывают по всему периметру узкой полоской изоляционной ленты, после чего любые два соседних гвоздя отгибают в сторону центра прямоугольника и снимают катушку.

В качестве корпусов приемника и передатчика использованы полистироловые коробки для пуговиц (внутренние размеры - 120x80 мм). Отсеки для батареи питания, стойки для печатных плат и элементы крепления катушек изготовлены из такого же материала и приклеены к корпусам растворителем марки Р-647 (можно использовать и Р-650). Расположение деталей в корпусе передатчика показано на рис. 5, аналогично скомпонованы и детали приемника.


Рис.5

Все металлические элементы конструкции, расположенные внутри катушек приемника и передатчика (батарея питания, плата с деталями, выключатель питания), влияют на их магнитное поле. Для исключения возможного изменения их положения в процессе эксплуатации все они должны быть надежно закреплены. Особенно это касается батареи "Крона" как сменного элемента конструкции.

Налаживание . Для проверки работы передатчика вместо катушки L1 подключают телефоны и убеждаются в том, что при включении питания в телефонах слышен звук. Затем, подключив на место катушку, контролируют ток, потребляемый передатчиком, он i должен быть в пределах 5...7 мА.

Приемник настраивают при замкнутом накоротко входе. Подбором резистора R1 в первом каскаде и R3 во втором устанавливают на коллекторах соответственно транзисторов VT1 и VT2 напряжение, равное примерно половине напряжения питания. Затем подбором резистора R5 добиваются того, чтобы ток коллектора транзистора VT3 стал равным 5...7 мА. После этого, разомкнув вход, подключают к нему катушку приемника L1 и, принимая сигнал передатчика на расстоянии примерно 1 м, убеждаются в работоспособности системы в целом.

До сборки узлов в единую конструкцию есть смысл провести несколько экспериментов. Установив передатчик и приемник на столе вертикально на расстоянии 1 м (с таким расчетом, чтобы оси катушек как бы продолжали одна другую) и контролируя уровень сигнала в телефонах, медленно поворачивайте приемник вокруг вертикальной оси в положение, в котором плоскости катушек перпендикулярны одна другой. При этом сигнал сначала будет медленно убывать, затем исчезнет полностью и при дальнейшем повороте начнет нарастать. Эксперимент проведите несколько раз, чтобы при сборке и налаживании металлоискателя легко определять минимум сигнала в приемнике.


Рис.6

Затем на столе, не содержащем металлических элементов конструкции, поставьте передатчик вертикально, а на расстоянии 10 см от него положите приемник горизонтально на подставку (одну или несколько книг) с таким расчетом, чтобы плоскость катушки приемника расположилась перпендикулярно плоскости катушки передатчика и по высоте находилась чуть ниже ее центра. Контролируя уровень сигнала в телефонах, приподнимите сторону приемника, обращенную к передатчику, и добейтесь пропадания сигнала. Подбором прокладок между приемником и подставкой найдите его положение, при котором малейшее перемещение прокладки, изготовленной из бумажной открытки, позволяет устанавливать минимум сигнала в приемнике, что соответствует максимальной чувствительности металлоискателя.

Внося в зону действия макета металлоискателя поочередно закаточные крышки из жести и алюминия, убедитесь, что зона максимальной чувствительности металлоискателя находится под и над катушкой приемника (магнитные поля катушек приемника и передатчика симметричны). Обратите внимание на то, что на одинаковые по размерам крышки из разных металлов металлоискатель реагирует по-разному.

Если при минимальной связи катушек сигнал немного прослушивается и при внесении крышки с одной стороны сначала уменьшается до полного исчезновения, а затем начинает нарастать, а при внесении ее с другой стороны нарастает без провала, то это свидетельствует либо о неточной установке минимума, либо об искажениях магнитного поля катушки приемника или передатчика. В то же время этот факт говорит о том, что внесением дополнительного металлического предмета можно подстроить систему до полного исчезновения сигнала на минимуме, т. е. добиться максимальной чувствительности устройства. Если при внесении закаточной крышки сигнал исчезает полностью с расстояния 15...20 см, то внесением в поле металлоискателя предмета меньшего размера тот же эффект можно получить при размещении его на корпусе приемника или передатчика. В авторском варианте таким предметом оказалась монета диаметром 25 мм из желтого металла (аналогичный эффект получится и при внесении близкой по размерам алюминиевой пластинки). Мест, в которых монета выполняла возложенную на нее задачу, оказалось три: снизу под передатчиком, под приемником в районе батареи питания и на ручке между приемником и передатчиком.

Сборка . Конструкция авторского варианта устройства в упрощенном виде показана на рис. 6, а внешний вид - на рис. 7. Несущая рейка 2 (см. рис. 6) и ручка 3 изготовлены из древесины. Верхняя часть ручки для удобства пользования оклеена пластмассой, а нижняя вставлена в предварительно сделанное отверстие в рейке и закреплена клеем. После сборки деревянная часть ручки 3 и несущая рейка 2 покрыты лаком для защиты от влаги. В верхней части ручки установлено телефонное гнездо 4, которое соединено с приемником проводами, свитыми в пару.

При сборке передатчик 1 жестко закрепляют на несущей рейке 2 с таким расчетом, чтобы приемник 7, расположенный на ее другом конце, находился немного ниже линии, соответствующей минимуму принимаемого сигнала. Затем подбирают толщину прокладки 5 (из любого изоляционного материала), пока перемещением регулировочной пластины 6 не будет легко устанавливаться минимум принимаемого сигнала. После этого приемник 7 закрепляют на несущей рейке 2 двумя шурупами. Шуруп у края несущей рейки 2 ввинчивают до упора, а второй (примерно в середине нижней стенки корпуса) не довинчивают на 1...2 мм. Это исключает перемещение приемника в горизонтальной плоскости и в то же время позволяет подсовывать под его корпус регулировочную пластину 6, приподнимая край приемника. Перемещая его таким образом в вертикальной плоскости, добиваются минимума принимаемого сигнала. После окончательной сборки уточняют место положения компенсирующего предмета и приклеивают его.

Предлагаемый металлоискатель предназначен для "дальнего" поиска сравнительно крупных предметов. Он собран по простейшей схеме без дискриминатора по типам металлов. Прибор несложен в изготовлении.

Глубина обнаружения составляет:

  • пистолет - 0,5 м;
  • каска -1 м;
  • ведро - 1,5 м.

Структурная схема

Структурная схема приведена на рис. 4. Она состоит из нескольких функциональных блоков.


Рис. 4. Структурная схема металлоискателя по принципу "передача-прием"

Для его устранения предназначена схема компенсации. Смысл ее работы заключается в том, что в сигнал приемного усилителя подмешивается некоторая часть сигнала с выходного колебательного контура так, чтобы минимизировать (в идеале - довести до нуля) выходной сигнал синхронного детектора при отсутствии вблизи датчика металлических предметов. Настройка схемы компенсации осуществляется с помощью регулировочного потенциометра.

Синхронный детектор преобразует полезный переменный сигнал, поступающий с выхода приемного усилителя, в постоянный сигнал. Важной особенностью синхронного детектора является возможность выделения полезного сигнала на фоне шумов и помех, значительно превышающих полезный сигнал по амплитуде. Опорный сигнал синхронного детектора берется со второго выхода кольцевого счетчика, сигнал которого имеет сдвиг по фазе относительно первого выхода на 90°. Динамический диапазон изменения полезного сигнала как на выходе приемной катушки, так и на выходе синхронного детектора очень широк. Чтобы устройство индикации - стрелочный прибор или звуковой индикатор одинаково хорошо регистрировали как очень слабые сигналы, так и очень (например, в 100 раз) более сильные сигналы, необходимо иметь в составе прибора устройство, сжимающее динамический диапазон. Таким устройством является нелинейный усилитель, амплитудная характеристика которого приближается к логарифмической. К выходу нелинейного усилителя подключен стрелочный измерительный прибор.

Формирование звукового сигнала индикации начинается ограничителем по минимуму, т.е. блоком, имеющим зону нечувствительности для малых сигналов. Это означает, что звуковая индикация включается только для сигналов, превосходящих по амплитуде некоторый порог. Таким образом, слабые сигналы, связанные в основном с движением прибора и его механическими деформациями, не раздражают слух. Формирователь опорного сигнала звуковой индикации формирует пачки прямоугольных импульсов частотой 2 кГц с частотой повторения пачек 8 Гц. С помощью балансного модулятора этот опорный сигнал перемножается на выходной сигнал ограничителя по минимуму, формируя таким образом сигнал нужной формы и нужной амплитуды. Усилитель пьезоизлучателя увеличивает амплитуду сигнала, который поступает на акустический преобразователь - пьезоизлучатель.

Принципиальная схема



Рис. 5. Принципиальная электрическая схема входного блока металлоискателя по принципу "передача-прием" (нажмите для увеличения)

Генератор

Генератор собран на логических элементах 2И-НЕ D1.1-D1.4. Частота генератора стабилизирована кварцевым или пьезокерамическим резонатором Q с резонансной частотой 215 Гц " 32 кГц ("часовой кварц"). Цепь R1C1 препятствует возбуждению генератора на высших гармониках. Через резистор R2 замыкается цепь ООС, через резонатор Q - цепь ПОС. Генератор отличается простотой, малым потребляемым током от источника питания, надежно работает при напряжении питания 3...15 В, не содержит подстроечных элементов и чересчур высокоомных резисторов. Выходная частота генератора - около 32 кГц.

Кольцевой счетчик

Кольцевой счетчик выполняет две функции. Во- первых, он делит частоту генератора на 4, до частоты 8 кГц. Во-вторых, он формирует два сигнала, сдвинутых один относительно другого на 90° по фазе. Один сигнал используется для возбуждения колебательного контура с излучающей катушкой, другой - в качестве опорного сигнала синхронного детектора. Кольцевой счетчик представляет собой два D-триггера D2.1 и D2.2, замкнутых в кольцо с инверсией сигнала по кольцу. Тактовый сигнал - общий для обоих триггеров. Любой выходной сигнал первого триггера D2.1 имеет сдвиг по фазе на плюс-минус четверть периода (т.е. на 90°) относительно любого выходного сигнала второго триггера D2.2.

Усилитель мощности

Усилитель мощности собран на операционном усилителе (ОУ) D3.1. Колебательный контур с излучающей катушкой образован элементами L1C2. Параметры катушки индуктивности приведены в табл. 2. Марка провода обмоток - ПЭЛШО 0,44.

Таблица 2. Параметры катушек индуктивности датчика


В цепь ОС усилителя выходной колебательный контур включен только на 25%, благодаря отводу от 50-го витка излучающей катушки L1. Это позволяет увеличить амплитуду тока в катушке при приемлемом значении емкости прецизионного конденсатора С2.

Значение переменного тока в катушке задается резистором R3. Этот резистор должен иметь минимальную величину, но такую, чтобы ОУ усилителя мощности не попадал в режим ограничения выходного сигнала по току (не более 40 мА) или, - что вероятнее всего при рекомендуемых параметрах катушки индуктивности L1, - по напряжению (не более ±3,5 В при напряжении батарей питания ±4,5 В). Для того чтобы убедиться в отсутствии режима ограничения, достаточно проверить осциллографом форму сигнала на выходе ОУ D3.1. При нормальной работе усилителя на выходе должен присутствовать сигнал, приближающийся по форме к синусоиде. Вершины волн синусоиды должны иметь плавную форму и не должны быть срезаны. Цепь коррекции ОУ D3.1 состоит из корректирующего конденсатора С3 емкостью 33 пФ.

Приемный усилитель

Приемный усилитель - двухкаскадный. Первый каскад выполнен на ОУ D5.1. Он обладает высоким входным сопротивлением благодаря последовательной ООС по напряжению. Это позволяет исключить потери полезного сигнала вследствие шунтирования колебательного контура L2C5 входным сопротивлением усилителя. Коэффициент усиления первого каскада по напряжению составляет: Кu = (R9/R8) + 1 = 34. Цепь коррекции ОУ D5.1 состоит из корректирующего конденсатора С6 емкостью 33 пФ.

Второй каскад приемного усилителя выполнен на ОУ D5.2 с параллельной ООС по напряжению. Входное сопротивление второго каскада: Rвх = R10 = 10 кОм - не так критично, как первого, ввиду низкоомности его источника сигнала. Разделительный конденсатор С7 не только предотвращает накапливание статической погрешности по каскадам усилителя, но и корректирует его ФЧХ. Емкость конденсатора выбирается такой, чтобы создаваемое цепью C7R10 опережение по фазе на рабочей частоте 8 кГц компенсировало запаздывание по фазе, вызванное конечным быстродействием ОУ D5.1 и D5.2.

Второй каскад приемного усилителя, благодаря своей схеме, позволяет легко осуществить суммирование (подмешивание) сигнала от схемы компенсации через резистор R11. Коэффициент усиления второго каскада по напряжению полезного сигнала составляет: Кu = - R12/R10 = -33, а по напряжению компенсирующего сигнала: Кuk = - R12/R11 = - 4. Цепь коррекции ОУ D5.2 состоит из корректирующего конденсатора С8 емкостью 33 пФ.

Схема стабилизации

Схема компенсации выполнена на ОУ D3.2 и представляет собой инвертор с Кu = - R7/R5 = -1. Регулировочный потенциометр R6 включен между входом и выходом этого инвертора и позволяет снять сигнал, лежащий в диапазоне [-1,+1] от выходного напряжения ОУ D3.1. Выходной сигнал схемы компенсации с движка регулировочного потенциометра R6 поступает на компенсирующий вход второго каскада приемного усилителя (на резистор R11).

Регулировкой потенциометра R6 добиваются нулевого значения на выходе синхронного детектора, что приблизительно соответствует компенсации проникшего в приемную катушку нежелательного сигнала. Цепь коррекции ОУ D3.2 состоит из корректирующего конденсатора С4 емкостью 33 пФ.

Синхронный детектор

Синхронный детектор состоит из балансного модулятора, интегрирующей цепи и усилителя постоянных сигналов (УПС). Балансный модулятор реализован на основе многофункционального коммутатора D4, выполненного по интегральной технологии с комплементарными полевыми транзисторами как в качестве управляющих дискретных вентилей, так и в качестве аналоговых ключей. Коммутатор работает в качестве аналогового переключателя. С частотой 8 кГц он поочередно замыкает на общую шину выходы "треугольника" интегрирующей цепи, состоящей из резисторов R13 и R14 и конденсатора C10. Сигнал опорной частоты поступает на балансный модулятор с одного из выходов кольцевого счетчика.

Сигнал на вход "треугольника" интегрирующей цепи поступает через разделительный конденсатор С9 с выхода приемного усилителя. Постоянная времени интегрирующей цепи t = R13*C10 = R14*C10. Она должна быть, с одной стороны, как можно больше, чтобы как можно сильнее ослабить влияние шумов и помех. С другой стороны, она не должна превышать некоторый предел, когда инерционность интегрирующей цепи препятствует отслеживанию быстрых изменений амплитуды полезного сигнала.

Наибольшую скорость изменения амплитуды полезного сигнала можно охарактеризовать некоторым минимальным временем, за которое может произойти это изменение (от установившегося значения до максимального отклонения) при движении датчика металлоискателя относительно металлического предмета. Очевидно, что максимальная скорость изменения амплитуды полезного сигнала будет наблюдаться при максимальной скорости движения датчика. Она может достигать 5 м/с для "маятникового" движения датчика на штанге. Время изменения амплитуды полезного сигнала можно оценить как отношение базы датчика к скорости движения. Положив минимальное значение базы датчика, равное 0,2 м, получим минимальное время изменения амплитуды полезного сигнала 40 мс. Это в несколько раз больше, чем постоянная времени интегрирующей цепи при выбранных номиналах резисторов R13, R14 и конденсатора C10. Следовательно, инерционность интегрирующей цепи не исказит динамику даже самых быстрых из всех возможных изменений амплитуды полезного сигнала от датчика металлоискателя.

Выходной сигнал интегрирующей цепи снимается с конденсатора СЮ. Так как у последнего обе обкладки находятся под "плавающими потенциалами", УПС представляет собой дифференциальный усилитель, выполненный на ОУ D6. Помимо усиления постоянного сигнала, УПС выполняет функцию фильтра нижних частот (ФНЧ), дополнительно ослабляющего нежелательные высокочастотные компоненты на выходе синхронного детектора, связанные, в основном, с неидеальностью балансного модулятора.

ФНЧ реализуется благодаря конденсаторам С11, С13. В отличие от остальных узлов металлоискателя, ОУ УПС по своим параметрам должен приближаться к прецизионным ОУ. В первую очередь, это относится к величине входного тока, величине напряжения смещения и величине температурного дрейфа напряжения смещения. Удачным вариантом, сочетающим хорошие параметры и относительную доступность, является ОУ типа К140УД14 (или КР140УД1408). Цепь коррекции ОУ D6 состоит из корректирующего конденсатора С12 емкостью 33 пФ.

Нелинейный усилитель

Нелинейный усилитель выполнен на ОУ D7.1 с нелинейной ООС по напряжению. Нелинейная ООС реализована двухполюсником, состоящим из диодов VD1-VD8 и резисторов R20-R24. Амплитудная характеристика нелинейного усилителя приближается к логарифмической. Она представляет собой кусочно-линейную, с четырьмя точками излома для каждой полярности, аппроксимацию логарифмической зависимости. Благодаря плавной форме вольтамперных характеристик диодов амплитудная характеристика нелинейного усилителя сглажена в точках излома. Малосигнальный коэффициент усиления нелинейного усилителя по напряжению составляет: Кuk = - (R23+R24)/R19 = -100. С ростом амплитуды входного сигнала коэффициент усиления уменьшается. Дифференциальный коэффициент усиления для большого сигнала составляет: dUвых/dUвх = - R24/R19 = = -1. К выходу нелинейного усилителя подключен стрелочный измерительный прибор - микроамперметр с последовательно включенным добавочным резистором R25. Так как напряжение на выходе синхронного детектора может иметь любую полярность (в зависимости от сдвига фазы между, его опорным и входным сигналами), использован микроамперметр с нулем в середине шкалы. Таким образом, стрелочный прибор имеет диапазон индикации -100... 0 ... +100 мкА. Цепь коррекции ОУ D7.1 состоит из корректирующего конденсатора С18 емкостью 33 пФ.

Ограничитель по минимуму

Ограничитель по минимуму реализован на ОУ D7.2 с нелинейной параллельной ООС по напряжению Нелинейность заключена во входном двухполюснике и состоит из двух встречно-параллельно включенных диодов VD9, VD10 и резистора R26.



Рис. 6. Принципиальная электрическая схема блока индикации металлоискателя по принципу "передача-прием" (нажмите для увеличения)

Формирование звукового сигнала индикации из выходного сигнала нелинейного усилителя начинается с еще одной корректировки амплитудной характеристики усилительного тракта. В данном случае формируется зона нечувствительности в области малых сигналов. Это означает, что звуковая индикация включается только для сигналов, превосходящих некоторый порог. Этот порог определяется

прямым напряжением диодов VD9, VD10 и составляет около 0,5 В. Таким образом, слабые сигналы, связанные в основном с движением прибора и его механическими деформациями, отсекаются и не раздражают слух.

Малосигнальный коэффициент усиления ограничителя по минимуму равен нулю. Дифференциальный коэффициент усиления по напряжению для большого сигнала составляет: dUвых/dUвх = - R27/R26 = -1. Цепь коррекции ОУ D7.2 состоит из корректирующего конденсатора С19 емкостью 33 пФ.

Балансный модулятор

Сигнал звуковой индикации формируется следующим образом. Постоянный или медленно меняющийся сигнал на выходе ограничителя по минимуму перемножается на опорный сигнал звуковой индикации. Опорный сигнал задает форму для звукового сигнала, а выходной сигнал ограничителя по минимуму - амплитуду. Перемножение двух сигналов осуществляется с помощью балансного модулятора. Он реализован на многофункциональном коммутаторе D11, работающем в качестве аналогового ключа, и ОУ D8.1. Коэффициент передачи устройства равен +1 при разомкнутом ключе и -1 - при замкнутом. Цепь коррекции ОУ D8.1 состоит из корректирующего конденсатора С20 емкостью 33 пФ.

Формирователь опорного сигнала

Формирователь опорного сигнала реализован на двоичном счетчике D9 и счетчике-дешифраторе D10. Счетчик D9 делит частоту 8 кГц с выхода кольцевого счетчика до частоты 2 кГц и 32 Гц. Сигнал с частотой 2 кГц поступает на младший разряд адреса АО многофункционального коммутатора D11, задавая таким образом тональный сигнал с наиболее чувствительной для человеческого уха частотой. Этот сигнал будет воздействовать на аналоговый ключ балансного модулятора только в том случае, когда на старшем разряде адреса А1 многофункционального коммутатора D11 будет присутствовать логическая 1. При логическом нуле на А1 аналоговый ключ балансного модулятора все время разомкнут.

Сигнал звуковой индикации формируется прерывистым, чтобы меньше утомлялся слух. Для этого используется счетчик-дешифратор D10, который управляется тактовой частотой 32 Гц с выхода двоичного счетчика D9 и формирует на своем выходе прямоугольный сигнал с частотой 8 Гц и соотношением длительности логической единицы и логического нуля, равным 1/3. Выходной сигнал счетчика-дешифратора D10 поступает на старший разряд адреса А1 многофункционального коммутатора D11, периодически прерывая формирование тональной посылки в балансном модуляторе.

Усилитель пьезоизлучателя

Усилитель пьезоизлучателя реализован на ОУ D8.2. Он представляет собой инвертор с коэффициентом усиления по напряжению Ки = - 1. Нагрузка усилителя - пьезоизлучатель - включена по мостовой схеме между выходами ОУ D8.1 и D8.2. Это позволяет в два раза увеличить амплитуду выходного напряжения на нагрузке. Выключатель S предназначен для отключения звуковой индикации (например, при настройке). Цепь коррекции ОУ D8.2 состоит из корректирующего конденсатора С21 емкостью 33 пФ.

Типы деталей и конструкция

Типы используемых микросхем приведены в табл. 3. Вместо микросхем серии К561 возможно использование микросхем серии К1561. Можно попытаться применить некоторые микросхемы серии К176 и зарубежные аналоги.

Таблица 3. Типы используемых микросхем

Сдвоенные операционные усилители (ОУ) серии К157 можно заменить любыми сходными по параметрам одиночными ОУ общего назначения (с соответствующими изменениями в цоколевке и цепях коррекции), хотя применение сдвоенных ОУ удобнее (возрастает плотность монтажа).

Операционный усилитель синхронного детектора D6, как уже указывалось выше, по своим параметрам должен приближаться к прецизионным ОУ. Кроме типа, указанного в таблице, подойдут К140УД14, 140УД14. Возможно применение ОУ К140УД12, 140УД12, КР140УД1208 в соответствующей схеме включения.

К применяемым в схеме металлоискателя резисторам не предъявляется особых требований. Они лишь должны иметь прочную конструкцию и быть удобны для монтажа. Номинал рассеиваемой мощности 0,125...0,25 Вт.

Потенциометр компенсации R6 желателен многооборотный типа СП5-44 или с нониусной подстройкой типа СП5-35. Можно обойтись и обычными потенциометрами любых типов. В этом случае желательно их использовать два. Один - для грубой подстройки, номиналом 10 кОм, включенный в соответствии со схемой. Другой - для точной подстройки, включенный по схеме реостата в разрыв одного из крайних выводов первого потенциометра, номиналом 0,5...1 кОм.

Конденсаторы С15, С17 - электролитические. Рекомендуемые типы - К50-29, К50-35, К53-1, К53-4 и другие малогабаритные. Остальные конденсаторы, за исключением конденсаторов колебательных контуров приемной и излучающей катушек, - керамические типа К10-7 (до номина- па 68 нФ) и металлопленочные типа К73-17 (номиналы выше 68 нФ). Конденсаторы контуров - С2 и С5 - особые. К ним предъявляются высокие требования по точности и термостабильности. Каждый конденсатор состоит из нескольких (5...10 шт.) конденсаторов, включенных в параллель. Настройка контуров в резонанс осуществляется подбором количества конденсаторов и их номинала. Рекомендуемый тип конденсаторов К10-43. Их группа по термостабильности - МПО (т.е. приблизительно нулевой ТКЕ). Возможно применение прецизионных конденсаторов и других типов, например К71-7. В конце концов, можно попытаться использовать старинные термостабильные слюдяные конденсаторы с серебряными обкладками типа КСО или полистирольные конденсаторы.

Диоды VD1-VD10 типа КД521, КД522 или аналогичные кремниевые маломощные.

Микроамперметр - любого типа, рассчитанный на ток 100 мкА с нулем посередине шкалы. Удобны малогабаритные микроамперметры, например, типа М4247.

Кварцевый резонатор Q - любой малогабаритный часовой кварц (аналогичные кварцевые резонаторы используются в портативных электронных играх).

Выключатель питания - любого типа малогабаритный. Батареи питания - типа 3R12 (по международному обозначению) и "квадратные" (по нашему).

Пьезоизлучатель Y1 - может быть типа ЗП1-ЗП18. Хорошие результаты получаются при использовании пье- зоизлучателей импортных телефонов (идут в огромных количествах "в отвал" при изготовлении телефонов с определителем номера).

Конструкция прибора может быть достаточно произвольной. При ее разработке желательно учесть рекомендации, изложенные ниже, а также в параграфах, посвященных датчикам и конструкции корпусов.

Внешний вид прибора показан на рис. 7.


Рис. 7. Общий вид металлоискателя, выполненного по принципу "передача-прием"

По своему типу датчик предлагаемого металлоискателя относится к датчикам с перпендикулярными осями. Катушки датчика склеены из стеклотекстолита эпоксидным клеем. Этим же клеем залиты обмотки катушек вместе с арматурой их электрических экранов. Штанга металлоискателя изготовлена из трубы из алюминиевого сплава (АМГЗМ, АМГ6М или Д16Т) диаметром 48 мм и с толщиной стенки 2...3 мм. Катушки приклеены к штанге эпоксидным клеем: соосная (излучающая) - с помощью переходной усиливающей втулки; перпендикулярная к оси штанги (приемная) - с помощью подходящей формы переходника.

Указанные вспомогательные детали выполнены также из стеклотекстолита. Корпус электронного блока изготовлен из фольгированного стеклотекстолита путем пайки. Соединения катушек датчика с электронным блоком выполнены экранированным проводом с внешней изоляцией и проложены внутри штанги. Экраны этого провода подключены только к шине общего провода на плате электронной части прибора, куда также подключаются экран корпуса в виде фольги и штанга. Снаружи прибор покрашен нитроэмалью.

Печатная плата электронной части металлоискателя может быть изготовлена любым из традиционных способов, удобно также использовать готовые макетные печатные платы под DIP корпуса микросхем (шаг 2,5 мм).

Налаживание прибора

1. Проверить правильность монтажа по принципиальной схеме. Убедиться в отсутствии коротких замыканий между соседними проводниками печатной платы, соседними ножками микросхем и т.п.

2. Подключить батареи или двуполярный источник питания, строго соблюдая полярность. Включить прибор и измерить потребляемый ток. Он должен составлять около 20 мА по каждой шине питания. Резкое отклонение измеренных значений от указанной величины свидетельствует о неправильности монтажа или неисправности микросхем.

3. Убедиться в наличии на выходе генератора чистого меандра с частотой около 32 кГц.

4. Убедиться в наличии на выходах триггеров D2 меандра с частотой около 8 кГц.

5. Подбором конденсатора 02 настроить выходной контур L1C2 в резонанс. В простейшем случае - по максимуму амплитуды напряжения на нем (около 10 В), а более точно - по нулевому фазовому сдвигу напряжения контура относительно меандра на выходе 12 триггера D2.

Внимание! Настройку потенциометром R6 необходимо проводить при отсутствии вблизи катушек датчика металлоискателя крупных металлических предметов, включая измерительные приборы! В противном случае, при перемещении этих предметов или при перемещении датчика относительно них прибор расстроится, а при наличии крупных металлических предметов вблизи датчика установить выходное напряжение синхронного детектора в ноль не удастся. О компенсации см. также в параграфе, посвященном возможным модификациям.

8. Убедиться в работе нелинейного усилителя. Простейший способ - визуально. Микроамперметр должен реагировать на процесс настройки, производимой потенциометром R6. При некотором положении движка R6 стрелка микроамперметра должна установиться в ноль. Чем дальше стрелка микроамперметра находится от нуля, тем слабее должен реагировать микроамперметр на вращение движка R6.

Может так оказаться, что неблагоприятная электромагнитная обстановка затруднит наладку прибора. В этом случае стрелка микроамперметра будет совершать хаотические или периодические колебания при приближении движка потенциометра R6 к тому положению, в котором должна иметь место компенсация сигнала. Описанное нежелательное явление объясняется наводками высших гармоник сети 50 Гц на приемную катушку. На значительном удалении от проводов с электричеством колебания стрелки при настройке должны отсутствовать.

9. Убедиться в работоспособности узлов, формирующих звуковой сигнал. Обратить внимание на наличие небольшой зоны нечувствительности по звуковому сигналу вблизи нуля по шкале микроамперметра.

При наличии неполадок и отклонений в поведении отдельных узлов схемы металлоискателя следует действовать по общепринятой методике:

  • проверить отсутствие самовозбуждения ОУ;
  • проверить режимы ОУ по постоянному току;
  • сигналы и логические уровни входов/выходов цифровых микросхем, и т.д. и т.п.

Возможные модификации

Схема прибора достаточно проста и поэтому речь может идти только о дальнейших усовершенствованиях. К ним можно отнести:

2. Добавление дополнительного канала визуальной индикации, содержащего синхронный детектор, нелинейный усилитель и микроамперметр. Опорный сигнал синхронного детектора дополнительного канала берется со сдвигом на четверть периода относительно опорного сигнала основного канала (с любого выхода другого триггера кольцевого счетчика). Обладая некоторым опытом поиска, можно по показаниям двух стрелочных приборов научиться оценивать характер обнаруженного объекта, т.е. работать не хуже электронного дискриминатора.

3. Добавление защитных диодов, включенных в обратной полярности параллельно источникам питания. При ошибке в полярности включения батарей в этом случае гарантируется, что схема металлоискателя не пострадает (хотя, если вовремя не среагировать, полностью разрядится неправильно включенная батарея). Включать диоды последовательно с шинами питания не рекомендуется, так как в этом случае на них пропадет впустую 0,3...0,6 В драгоценного напряжения источников питания. Тип защитных диодов - КД243, КД247, КД226 и т.п.

Принцип действия металлоискателей этого типа основан на воздействии на изучаемый объект переменным магнитным полем передающей катушки и регистрации сигнала, появляющегося вследствие наведения вихревых токов в мишени. Таким образом они относятся к приборам локационного типа и должны иметь по крайней мере 2 катушки – передающую и приёмную.

Как излучаемы, так и принимаемый сигналы являются непрерывными и совпадают по частоте.

Принципиальным моментом для металлоискателей такого типа является выбор расположения катушек. Они должны быть расположены так, чтобы в отсутствие посторонних металлических предметов магнитное поле излучающей катушки наводило нулевой сигнал в приёмной катушке.

Катушки, которые создают излучение или принимаю сигнал, выполняют в виде некоторой конструкции, называемой поисковой рамкой. Параллельное расположение катушек называется компланарным.

Обычно в металлоискателях такого типа поисковую рамку образуют 2 катушки, расположенный в одной плоскости и сбалансированные так, что при подаче сигнала в предыдущую катушку на выходе приёмной – минимальный сигнал. Рабочая частота излучении – от одного до нескольких десятков кГц.

Металлоискатели на биениях

Биением называют явление, возникающее при перемножение двух периодических сигналов с близкими частотами и амплитудами. Результирующий сигнал будет иметь пульсации с частотой, равной разности частот. Если сигнал низкой частоты подать на динамик, то мы услышим характерный «булькающий» звук.

Металлоискатель содержит два генератора: опорный и измерительный. Первый имеет стабильную частоту, а второй может менять частоту при приближении к металлическому предмету. Его чувствительным элементом является катушка индуктивности, выполненная в виде поисковой рамки.

Сигналы от генераторов поступают на детектор, на выходе которого выделяется переменное напряжение с частотой, равной разности частот опорного и измерительного генераторов. Далее этот сигнал увеличивается по амплитуде и поступает на световой звуковой индикаторы.

Наличие металла вблизи измерительной рамки приводит к изменению параметров окружающего его магнитного поля и к изменению частоты соответствующего генератора. Возникает разность частот, которая выделяется и используется для формирования сигнала.

Чем больше масса металла и ближе металлический предмет, тем сильнее различаются частоты генераторов и выше частота выходного напряжения генератора.

Как некоторую модификацию металлоискателей на биениях можно рассматривать металлоискатели – частотомеры . В них есть только измерительный генератор. При приближении измерительной рамки металлоискателя к металлическому предмету меняется частота генератора. Затем из неё вычитается длина периода при отсутствии металла.

Однокатушечные металлоискатели индукционного типа

В этом металлоискателе - одно катушка, которая одновременно является излучающей и приёмной.

Вокруг катушки создаётся электромагнитное поле, которое достигнув металлический предмет, создаёт в нём вихревые токи, которые являются причиной изменения магнитной индукции поля вокруг катушки.

Возникшие в объекте токи меняют величину магнитной индукции электромагнитного поля вокруг катушки. Компенсирующее устройство поддерживает постоянный ток через катушку. Поэтому при изменении индуктивности сработает индикатор.

Импульсные металлоискатели

Импульсный металлоискатель состоит из генератора импульсов тока, приёмной и излучающей катушек, устройства коммутации и блока обработки сигнала. По принципу работы – металлоискатель локационного типа.

С помощью блока коммутации генератор тока периодически формирует короткие импульсы тока, поступающие в излучающую катушку, которая создаёт импульсы электромагнитного излучения. При воздействии этого излучения на металлический предмет в последнем возникает и некоторое время сохраняется затухший импульс тока. Этот ток создаёт излучение от металлического объекта, которое наводит ток в катушке измерительной рамки. По величине наведённого сигнала можно судить о наличии или отсутствии проводящих предметов около измерительной рамки.

Главная проблема металлоискателей этого типа – отделить слабое вторичное излучение от значительно более мощного излучения.

Большинство металлоискателей импульсного типа имеют низкую частоту следования импульса тока, подаваемых на излучающую катушку.

Магнитометры

Для магниточувствительных металлоискателей чувствительность принято обозначать величиной магнитной индукции поля, которую способен зарегистрировать прибор. Обычно чувствительность измеряют в нанотеслах.

Кроме чувствительности для определения качеств магнитометра используют разрешающую способность, которая определяет минимальную разницу индукции.

Широкое распространение получили приборы, принцип работы которых основан на использовании нелинейных свойств ферромагнитных материалов.

Чувствительные элементы, реализующие этот принцип, назвали феррозонды .

Типичная конструкция магнитометра включает в себя штангу с размещёнными на ней батарейным блоком питания и электронным блоком, а также феррозондовый преобразователь на оси, перпендикулярной штанге.

Перед применением прибор предварительно калибруют, чтобы компенсировать воздействие поля Земли в отсутствие ферромагнитных объектов контроля.

Существуют магнитометры, работающие на других физических принципах. Так, известны квантовые приборы, основанные на эффекте ядерного магнитного резонанса и эффекта Зеемана, с оптической накачкой. Они обладают большой чувствительностью.

Ручные металлоискатели

Имеют не большие размеры и вес. В процессе поиска они вручную перемещаются вдоль объекта контроля.

Способность объекта воспринимать металлические предметы определяется его чувствительностью. Ручные металлоискатели позволяют обнаружить предмет размером с небольшую монету с расстояния от 5-10 до нескольких десятков сантиметров.

Чувствительность зависит от ориентации рамки металлоискателя относительно объекта контроля. Рекомендуется проводить поисковую рамку вдоль объекта контроля несколько раз под разными углами.

Примеры ручных металлоискателей:

селективный металлодетектор АКА 7215 :

Тональность сигнала тревоги зависит от типа обнаруженного металла

Имеет потенциометр для плавной регулировки чувствительности, а также переключатель – черные и цветные металлы

Непрерывное время работы от свежей 9В-батареи – не менее 40 часов

Вес 280 г.

Ручной металлодетектор GARRETT :

Наличие переключателя для снижения чувствительности

Автоматический контроль степени разряженности батареи

Индикация тревоги – звуковая и светодиодная

Ударопрочный корпус

Разъем для наушников/аккумулятора

Удовлетворяет гигиеническим сертификатам

Время непрерывной работы - до 80 часов

Для разработок последних лет характерно увеличение «электронной сложности» приборов. Они снабжаются микропроцессорами, дисплеями и т.д. Всё это позволяет расширить функциональные возможности приборов.

На дисплеях отображается информация об обнаруженном предмете и его проводимости.



Loading...Loading...