Атомы элементов iva группы. Общая характеристика элементов IVA группы

IVA группа химических элементов периодической системы Д.И. Менделеева включает в себя неметаллы (углерод и кремний), а также металлы (германий, олово, свинец). Атомы этих элементов содержат на внешнем энергетическом уровне четыре электрона (ns 2 np 2), два из которых не спарены. Поэтому атомы этих элементов в соединениях могут проявлять валентность II. Атомы элементов IVA группы могут переходить в возбужденное состояние и увеличивать число неспаренных электронов до 4 и соответственно в соединениях проявлять высшую валентность, равную номеру группы IV. Углерод в соединениях проявляет степени окисления от –4 до +4, для остальных стабилизируются степени окисления: –4, 0, +2, +4.

В атоме углерода в отличие от всех других элементов число валентных электронов равно числу валентных орбиталей. Это одна из основных причин устойчивости связи С–С и исключительной склонности углерода к образованию гомоцепей, а также существования большого количества соединений углерода.

В изменении свойств атомов и соединений в ряду C–Si–Ge–Sn–Pb проявляется вторичная перидичность (таблица 5).

Таблица 5 – Характеристики атомов элементов IV группы

6 C 1 4 Si 3 2 Ge 50 Sn 82 Pb
Атомная масса 12,01115 28,086 72,59 118,69 207,19
Валентные электроны 2s 2 2p 2 3s 2 3p 2 4s 2 4p 2 5s 2 5p 2 6s 2 6p 2
Ковалентный радиус атома, Ǻ 0,077 0,117 0,122 0,140
Металлический радиус атома, Ǻ 0,134 0,139 0,158 0,175
Условный радиус иона, Э 2+ , нм 0,065 0,102 0,126
Условный радиус иона Э 4+ , нм 0,034 0,044 0,067 0,076
Энергия ионизации Э 0 – Э + , эв 11,26 8,15 7,90 7,34 7,42
Содержание в земной коре, ат. % 0,15 20,0 2∙10 –4 7∙10 – 4 1,6∙10 – 4

Вторичная периодичность (немонотонное изменение свойств элементов в группах) обусловлена характером проникновения внешних электронов к ядру. Так, немонотонность изменения атомных радиусов при переходе от кремния к германию и от олова к свинцу обусловлена проникновением s-электронов соответственно под экран 3d 10 -электронов у германия и двойной экран 4f 14 - и 5d 10 -электронов у свинца. Поскольку проникающая способность уменьшается в ряду s>p>d, внутренняя периодичность в изменении свойств наиболее отчетливо проявляется в свойствах элементов, определяемых s-электронами. Поэтому она наиболее типична для соединений элементов А-групп периодической системы, отвечающих высшей степени окисления элементов.

Углерод существенно отличается от других р-элементов группы высоким значением энергии ионизации.

Углерод и кремний имеют полиморфные модификации с разным строением кристаллических решеток. Германий относится к металлам, серебристо-белого цвета с желтоватым оттенком, но имеет алмазоподобную атомную кристаллическую решетку с прочными ковалентными связями. Олово имеет две полиморфные модификации: металлическую модификацию с металлической кристаллической решеткой и металлической связью; неметаллическую модификацию с атомной кристаллической решеткой, которая устойчива при температуре ниже 13,8 С. Свинец – темно-серый металл с металлической гранецентрированной кубической кристаллической решеткой. Изменение структуры простых веществ в ряду германий–олово–свинец соответствует изменению их физических свойств. Так германий и неметаллическое олово – полупроводники, металлическое олово и свинец проводники. Изменение типа химической связи от преимущественно ковалентной к металлической сопровождается понижением твердости простых веществ. Так, германий довольно тверд, свинец же легко прокатывается в тонкие листы.

Соединения элементов с водородом имеют формулу ЭН 4: СН 4 – метан, SiH 4 – силан, GeH 4 – герман, SnH 4 – станнан, PbH 4 – плюмбан. В воде нерастворимы. Сверху вниз в ряду водородных соединений уменьшается их устойчивость (плюмбан настолько неустойчив, что о его существовании можно судить только по косвенным признакам).

Соединения элементы с кислородом имеют общие формулы: ЭO и ЭO 2 . Оксиды CO и SiO являются несолеобразующими; GeO, SnO, PbO – амфотерные оксиды; CO 2 , SiO 2 GeO 2 – кислотные, SnO 2 , PbO 2 – амфотерные. С повышением степени окисления кислотные свойства оксидов возрастают, основные свойства ослабевают. Аналогично изменяются и свойства соответствующих гидроксидов.


| | | | | | | |

16.1. Общая характеристика элементов IIIA, IVA и VA групп

B
Бор
0,776

C
Углерод
0,620

N
Азот
0,521

Al Алюминий
1,312

Si
Кремний
1,068

P
Фосфор
0,919

Ga
Галлий
1,254

Ge Германий
1,090

As
Мышьяк
1,001

In
Индий
1,382

Sn
Олово
1,240

Sb
Сурьма
1,193

Tl
Таллий
1,319

Pb
Свинец
1,215

Bi
Висмут
1,295

Состав этих трех групп естественной системы элементов показан на рисунке 16.1. Здесь же приведены значения орбитальных радиусов атомов (в ангстремах). Именно в этих группах наиболее четко прослеживается граница между элементами, образующими металлы (орбитальный радиус больше 1,1 ангстрема), и элементами, образующими неметаллы (орбитальный радиус меньше 1,1 ангстрема). На рисунке эта граница показана двойной линией. Не следует забывать, что граница эта все же условна: алюминий, галлий, олово, свинец и сурьма безусловно амфотерные металлы, но и бор, германий, мышьяк проявляют некоторые признаки амфотерности.
Из атомов элементов этих трех групп в земной коре чаще всего встречаются следующие: Si (w = 25,8 %), Al (w = 7,57 %), P (w = 0,090 %), C (w = 0,087 %) и N (w = 0,030 %). Именно с ними вы и познакомитесь в этой главе.
Общие валентные электронные формулы атомов элементов IIIA группы – ns 2 np 1 , IVA группы – ns 2 np 2 , VA группы – ns 2 np 3 . Высшие степени окисления равны номеру группы. Промежуточные на 2 меньше.
Все простые вещества, образуемые атомами этих элементов (за исключением азота) – твердые. Для многих элементов характерна аллотропия (B, C, Sn, P, As). Устойчивых молекулярных веществ всего три: азот N 2 , белый фосфор P 4 и желтый мышьяк As 4 .

Элементы-неметаллы этих трех групп склонны образовывать молекулярные водородные соединения с ковалентными связями. Причем у углерода их так много, что углеводороды и их производные изучает отдельная наука – органическая химия. Второй по количеству водородных соединений среди этих элементов – бор. Бороводороды (бораны) весьма многочисленны и сложны по строению, поэтому химия бороводородов также выделилась в отдельный раздел химии. Кремний образует всего 8 водородных соединений (силанов), азот и фосфор – по два, остальные – по одному водородному соединению. Молекулярные формулы простейших водородных соединений и их названия:

Состав высших оксидов соответствует высшей степени окисления, равной номеру группы. Тип высших оксидов в каждой из групп с увеличением порядкового номера постепенно меняется от кислотного к амфотерному или основному.

Кислотно-основный характер гидроксидов весьма разнообразен. Так, HNO 3 – сильная кислота, а TlOH – щелочь.

1.Составьте сокращенные электронные формулы и энергетические диаграммы атомов элементов IIIA, IVA и VA групп. Укажите внешние и валентные электроны.

У атома азота есть три неспаренных электрона, поэтому по обменному механизму он может образовать три ковалентных связи. Еще одну ковалентную связь он может образовать по донорно-акцепторному механизму, при этом атом азота приобретает положительный формальный заряд +1 е . Таким образом, максимально азот пятивалентен, но его максимальная ковалентность равна четырем.(Именно этим объясняется часто свтречающееся утверждение о том, что азот не может быть пятивалентным)
Почти весь земной азот находится в атмосфере нашей планеты. Существенно меньшая часть азота присутствует в литосфере в виде нитратов. Азот входит в состав органических соединений, содержащихся во всех организмах и в продуктах их разложения.
Азот образует единственное простое молекулярное вещество N 2 с тройной связью двухатомной в молекуле (рис. 16.2). Энергия этой связи равна 945 кДж/моль, что превышает значения других энергий связи (см. таблицу 21). Этим объясняется инертность азота при обычных температурах. По физическим характеристикам азот – бесцветный газ без запаха, хорошо знакомый нам с рождения (земная атмосфера на три четверти состоит из азота). В воде азот малорастворим.

Азот образует два водородных соединения : аммиак NH 3 и гидразин N 2 H 6:

Аммиак – бесцветный газ с резким удушающим запахом. Неосторожное вдыхание концентрированных паров аммиака может привести к спазму и удушью. Аммиак очень хорошо растворим в воде, что объясняется образованием каждой молекулой аммиака четырех водородных связей с молекулами воды.

Молекула аммиака – частица-основание (см. приложение 14). Принимая протон она превращается в ион аммония. Реакция может протекать как в водном растворе, так и в газовой фазе:

NH 3 + H 2 O NH 4 + OH (в растворе);
NH 3 + H 3 O B = NH 4 + H 2 O (в растворе);
NH 3г + HCl г = NH 4 Cl кр (в газовой фазе).

Водные растворы аммиака достаточно щелочные для осаждения нерастворимых гидроксидов, но недостаточно щелочные для того, чтобы амфотерные гидроксиды растворялись в них с образованием гидроксокомплексов. Поэтому раствор аммиака удобно использовать для получения амфотерных гидроксидов p -элементов: Al(OH) 3 , Be(OH) 2 , Pb(OH) 2 и т. п., например:

Pb 2 + 2NH 3 + 2H 2 O = Pb(OH) 2 + 2NH 4 .

При поджигании на воздухе аммиак сгорает, образуя азот и воду; при взаимодействии с кислородом в присутствии катализатора (Pt) обратимо окисляется до монооксида азота:

4NH 3 + 3O 2 = 2N 2 + 6H 2 O (без катализатора),
4NH 3 + 5O 2 4NO + 6H 2 O (с катализатором).

При нагревании аммиак может восстанавливать оксиды не очень активных металлов, например, меди:

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O

Соли аммония по своим свойствам (кроме термической устойчивости) похожи на соли щелочных металлов. как и последние, почти все они растворимы в воде, но, так как ион аммония является слабой кислотой, гидролизованы по катиону. При нагревании соли аммония разлагаются:

NH 4 Cl = NH 3 + HCl ;
(NH 4) 2 SO 4 = NH 4 HSO 4 + NH 3 ;
(NH 4) 2 CO 3 = 2NH 3 + CO 2 + H 2 O ;
NH 4 HS = NH 3 + H 2 S ;
NH 4 NO 3 = N 2 O + 2H 2 O ;
NH 4 NO 2 = N 2 + 2H 2 O ;
(NH 4) 2 HPO 4 = NH 3 + (NH 4)H 2 PO 4 ;
(NH 4)H 2 PO 4 = NH 4 PO 3 + H 2 O .

Азот в различных степенях окисления образует с кислородом пять оксидов : N 2 O, NO, N 2 O 3 , NO 2 и N 2 O 5 .
Наиболее устойчив из них диоксид азота. Это бурый ядовитый газ с неприятным запахом. Реагирует с водой:

2NO 2 + H 2 O = HNO 2 + HNO 3 .

С раствором щелочи реакция идет с образованием нитрата и нитрита.
N 2 O и NO – несолеобразующие оксиды.
N 2 O 3 и N 2 O 5 – кислотные оксиды. Реагируя с водой, они соответственно образуют растворы азотистой и азотной кислот.

Оксокислота азота в степени окисления +III – азотистая кислота HNO 2 . Это слабая кислота, молекулы которой существуют только в водном растворе. Ее соли – нитриты. Азот в азотистой кислоте и нитритах легко окисляется до степени окисления +V.

В отличие от азотистой, азотная кислота HNO 3 – сильная кислота. Строение ее молекулы может быть выражено двумя способами:

С водой азотная кислота смешивается во всех отношениях, в разбавленных растворах нацело с ней реагируя:

HNO 3 + H 2 O = H 3 O + NO 3

Азотная кислота и ее растворы – сильные окислители. При разбавлении азотной кислоты ее окислительная активность снижается. В растворах азотной кислоты любой концентрации атомами окислителями являются прежде всего атомы азота, а не водорода. Поэтому при окислении азотной кислотой различных веществ водород если и выделяется, то только как побочный продукт. В зависимости от концентрации кислоты и восстановительной активности другого реагента, продуктами реакции могут быть NO 2 , NO, N 2 O, N 2 и даже NH 4 . Чаще всего образуется смесь газов, но в случае концентрированной азотной кислоты выделяется только диоксид азота:

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 ­ + 2H 2 O
3FeS + 30HNO 3 = Fe 2 (SO 4) 3 + Fe(NO 3) 3 + 27NO 2 + 15H 2 O

В случае разбавленной азотной кислоты чаще всего выделяется монооксид азота:

Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2H 2 O
3H 2 S + 2HNO 3 = 2NO + 4H 2 O + 3S

В случае очень разбавленной азотной кислоты, реагирующей с сильным восстановителем (Mg, Al, Zn), образуются ионы аммония:

4Mg + 10HNO 3 = 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Те металлы, которые пассивируются концентрированной серной кислотой, пассивируются и концентрированной азотной кислотой.
Соли азотной кислоты – нитраты – термически неустойчивые соединения. При нагревании они разлагаются:
2KNO 3 = 2KNO 2 + O 2 ;
2Zn(NO 3) 2 = 2ZnO + 4NO 2 + O 2 ;
2AgNO 3 = 2Ag + 2NO 2 + O 2 .

1.Составьте уравнения реакций, данных в тексте параграфа описательно.
2.Составьте уравнения реакций, характеризующих химические свойства а) аммиака, б) азотной кислоты, в) нитрата цинка.
Химические свойства аммиака и азотной кислоты.

16.3. Фосфор

В отличие от атома азота, атом фосфора может образовывать пять ковалентных связей по обменному механизму. Традиционное объяснение этого сводится к возможности возбуждения одного из 3s -электронов и переход его на 3d -подуровень.
Элемент фосфор образует довольно много аллотропных модификаций . Из них наиболее устойчивы три модификации: белый фосфор, красный фосфор и черный фосфор. Белый фосфор – воскообразное ядовитое склонное к самовозгоранию на воздухе вещество, состоящее из молекул P 4 . Красный фосфор – немолекулярное менее активное вещество темно-красного цвета с довольно сложным строением. Обычно красный фосфор всегда содержит примесь белого, поэтому и белый, и красный фосфор всегда хранят под слоем воды. Черный фосфор – также немолекулярное вещество со сложным каркасным строением.
Молекулы белого фосфора тетраэдрические, атом фосфора в них трехвалентен. Шаростержневая модель и структурная формула молекулы белого фосфора:


Строение красного фосфора может быть выражено структурной формулой:

Получают фосфор из фосфата кальция при нагревании с песком и коксом:

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 2P + 5CO.

Для фосфора наиболее характерны соединения со степенью окисления +V. При взаимодействии с избытком хлора фосфор образует пентахлорид. При сгорании любой аллотропной модификации фосфора в избытке кислорода образуется оксид фосфора(V):

4Р + 5O 2 = 2P 2 O 5 .

Существует две модификации оксида фосфора(V): немолекулярная (с простейшей формулой P 2 O 5) и молекулярная (с молекулярной формулой P 4 O 10). Обычно оксид фосфора представляет собой смесь этих веществ.

Этот очень гигроскопичный кислотный оксид, реагируя с водой, образует последовательно метафосфорную, дифосфорную и ортофосфорную кислоты:

P 2 O 5 + H 2 O = 2HPO 3 , 2HPO 3 + H 2 O = H 4 P 2 O 7 , H 4 P 2 O 7 + H 2 O = 2H 3 PO 4 .

Ортофосфорная кислота (обычно ее называют просто фосфорной) – трехосновная слабая кислота (см. приложение 13). Это бесцветное кристаллическое вещество, очень хорошо растворимое в воде. При реакции с сильными основаниями в зависимости от соотношения реагентов образует три ряда солей (ортофосфаты, гидроортофосфаты и дигидроортофосфаты – обычно в их названиях приставку "орто" опускают):

H 3 PO 4 + OH = H 2 PO 4 + H 2 O,
H 3 PO 4 + 2OH = HPO 4 2 + 2H 2 O,
H 3 PO 4 + 3OH = PO 4 3 + 3H 2 O.

Большинство средних фосфатов (исключение – соли щелочных элементов кроме лития) нерастворимы в воде. Растворимых кислых фосфатов существенно больше.
Фосфорную кислоту получают из природного фосфата кальция, обрабатывая его избытком серной кислоты. При другом соотношении фосфата кальция и серной кислоты образуется смесь дигидрофосфата и сульфата кальция, используемая в сельском хозяйстве в качестве минерального удобрения под названием "простой суперфосфат":
Ca 3 (PO 4) 2 + 3H 2 SO 4 = 2H 3 PO 4 + 3CaSO 4 ;
Ca 3 (PO 4) 2 + 2H 2 SO 4 = Ca(H 2 PO 4) 2 + 2CaSO 4 .

Более ценный "двойной суперфосфат" получают по реакции

Ca 3 (PO 4) 2 + 4H 3 PO 4 = 3Ca(H 2 PO 4) 3 .

Основным веществом этого минерального удобрения является дигидрофосфат кальция.

1.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения.
2.Составьте уравнения реакций, данных в тексте параграфа описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) фосфора, б) оксида фосфора(V), в) ортофосфорной кислоты, г) дигидрофосфата натрия.
Химические свойства фосфорной кислоты.

16.4. Углерод

Углерод – основная составная часть всех организмов. В природе встречаются как простые вещества, образованные углеродом (алмаз, графит), так и соединения (углекислый газ, различные карбонаты, метан и другие углеводороды в составе природного газа и нефти). Массовая доля углерода в каменных углях доходит до 97 %.
Атом углерода в основном состоянии может образовать две ковалентных связи по обменному механизму, но в обычных условиях такие соединения не образуются. Атом углерода, переходя в возбужденное состояние, использует все четыре валентных электрона.
Углерод образует довольно много аллотропных модификаций (см. рис. 16.2). Это алмаз, графит, карбин, различные фуллерены.

Алмаз – очень твердое бесцветное прозрачное кристаллическое вещество. Кристаллы алмаза состоят из атомов углерода в sp 3 -гибридизованном состоянии, образующих пространственный каркас.
Графит – довольно мягкое кристаллическое вещество серо-черного цвета. Кристаллы графита состоят из плоских слоев, в которых атомы углерода находятся в sp 2 -гибридном состоянии и образуют сетки с шестигранными ячейками.
Карбин – бесцветное вещество волокнистого строения, состоящее из линейных молекул, в которых атомы углерода находятся в sp -гибридном состоянии (=С=С=С=С= или –С С–С С–).
Фуллерены – молекулярные аллотропные модификации углерода с молекулами C 60 , C 80 и др. Молекулы этих веществ представляют собой полые сетчатые сферы.
Все модификации углерода проявляют восстановительные свойства в большей степени, чем окислительные, например, кокс (продукт переработки каменного угля; содержит до 98 % углерода) используется для восстановления железа из оксидных руд и ряда других металлов из их оксидов:

Fe 2 O 3 + 3C = 2Fe + 3CO (при высокой температуре).

Большую часть соединений углерода изучает органическая химия, с которой вы познакомитесь в 10-м и 11-м классах.
В неорганических веществах степень окисления углерода +II и +IV. С такими степенями окисления углерода существуют два оксида .
Оксид углерода(II) – бесцветный ядовитый газ, без запаха. Тривиальное название – угарный газ. Образуется при неполном сгорании углеродсодержащего горючего. Электронное строение его молекулы см. на стр. 121. По химическим свойствам CO несолеобразующий оксид, при нагревании проявляет восстановительные свойства (восстанавливает до металла многие оксиды не очень активных металлов).
Оксид углерода(IV) – бесцветный газ без запаха. Тривиальное название – углекислый газ. Кислотный оксид. В воде малорастворим (физически), частично реагирует с ней, образуя угольную кислоту H 2 CO 3 (молекулы этого вещества существуют только в очень разбавленных водных растворах).
Угольная кислота – кислота очень слабая (см. приложение 13), двухосновная, образует два ряда солей (карбонаты и гидрокарбонаты). Большинство карбонатов нерастворимо в воде. Из гидрокарбонатов как индивидуальные вещества существуют только гидрокарбонаты щелочных металлов и аммония. И карбонат-ион, и гидрокарбонат-ион – частицы основания, поэтому и карбонаты, и гидрокарбонаты в водных растворах подвергаются гидролизу по аниону.
Из карбонатов наибольшее значение имеют карбонат натрия Na 2 CO 3 (сода, кальцинированная сода, стиральная сода), гидрокарбонат натрия NaHCO 3 (питьевая сода, пищевая сода), карбонат калия K 2 CO 3 (поташ) и карбонат кальция CaCO 3 (мел, мрамор, известняк).
Качественная реакция на присутствие в газовой смеси углекислого газа: образование осадка карбоната кальция при пропускании исследуемого газа через известковую воду (насыщенный раствор гидроксида кальция) и последующее растворение осадка при дальнейшем пропускании газа. Протекающие реакции: Элемент кремний образует одно простое вещество с тем же названием. Это немолекулярное вещество со структурой алмаза, которому кремний лишь немного уступает по твердости. За последние полвека кремний стал абсолютно необходимым материалом для нашей цивилизации, так как его монокристаллы используются практически во всей электронной аппаратуре.
Кремний – довольно инертное вещество. при комнатной температуре он практически ни с чем кроме фтора и фтороводорода не реагирует:
Si + 2F 2 = SiF 4 ;
Si + 4HF = SiF 4 + 2H 2 .
При нагревании в виде тонко измельченного порошка сгорает в кислороде, образуя диоксид (SiO 2). При сплавлении со щелочью или при кипячении с концентрированными растворами щелочей образует силикаты:

Si + 4NaOH = Na 4 SiO 4 + 2H 2 ;
Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 .

Монооксид кремния SiO – несолеобразующий оксид ; легко окисляется до диоксида.
Диоксид кремния SiO 2 – немолекулярное вещество каркасного строения. С водой не реагирует. кислотный оксид – при сплавлении со щелочами образует силикаты, например:
SiO 2 + 2NaOH = Na 2 SiO 3 + H 2 O . Алюминий – следующий по распространенности в литосфере Земли элемент после кремния. Самостоятельно и вместе с кремнием он образует множество минералов: полевые шпаты, слюды, корунд Al 2 O 3 и его драгоценные разновидности (бесцветный лейкосапфир, содержащий примеси хрома рубин, содержащий примеси титана сапфир).
Простое вещество алюминий – серебристо-белый блестящий легкий металл. Чистый алюминий очень мягкий, его можно прокатывать в тонкую фольгу, вытягивать из него проволоку. У алюминия хорошая электропроводность. Он стоек к атмосферным воздействиям. Сплавы алюминия достаточно твердые, но хорошо обрабатываются. Алюминий не ядовит. Все это позволяет использовать алюминий в самых разнообразных отраслях промышленности: в авиационной, электротехнической, пищевой промышленности, в строительстве. Широко используется алюминий и в быту. Получают алюминий путем электролиза расплава его соединений.
Химическая инертность алюминия вызвана наличием на его поверхности плотной оксидной пленки, препятствующей контакту металла с реагентом. При удалении этой пленки химическим или механическим путем алюминий становится весьма активным. Так, лишенный оксидной пленки, алюминий самовоспламеняется и сгорает на воздухе без дополнительного нагревания.
Восстановительные свойства алюминия особенно хорошо проявляются при нагревании. В этих условиях он восстанавливает из оксидов многие металлы: не только железо, титан, цирконий, но даже кальций и барий.
Оксид алюминия Al 2 O 3 (тривиальные названия – глинозем, корунд) – немолекулярное вещество, связь в котором плохо описывается и как ионная, и как ковалентная. Как всегда в этих случаях это амфотерный оксид. Получают его при прокаливании гидроксида алюминия, который также обладает амфотерными свойствами.
Гидратированный ион алюминия – катионная кислота, поэтому растворимые соли алюминия довольно сильно гидролизованы.
Из солей алюминия наиболее употребмы алюмокалиевые квасцы KAl(SO 4) 2 ·12H 2 O – додекагидрат сульфата калия-алюминия. Это негигроскопичное прекрасно кристаллизующееся вещество. Его раствор ведет себя как смесь растворов двух разных сульфатов: сульфата калия и сульфата алюминия. Строение квасцов может быть выражено формулой: (SO 4) 2 .

1.Составьте уравнения реакций, данных в тексте параграфа описательно.
2.Составьте уравнения реакций, характеризующих химические свойства а) алюминия, б) гидроксида алюминия, и) алюмокалиевых квасцов..
Химические свойства солей алюминия

В IVA группе находятся самые важные элементы, без которых не было бы ни нас, ни Земли, на которой мы живем. Это углерод – основа всей органической жизни, и кремний – «монарх» царства минералов.

Если углерод и кремний – типичные неметаллы, а олово и свинец – металлы, то германий занимает промежуточное положение. Одни учебники относят его к неметаллам, а другие – к металлам. Он серебристо-белого цвета и внешне похож на металл, но имеет алмазоподобную кристаллическую решетку и является полупроводником, как и кремний.

От углерода к свинцу (с уменьшением неметаллических свойств):

w уменьшается устойчивость отрицательной степени окисления (-4)

w уменьшается устойчивость высшей положительной степени окисления (+4)

w увеличивается устойчивость низкой положительной степени окисления (+2)

Углерод – основная составная часть всех организмов. В природе встречаются как простые вещества, образованные углеродом (алмаз, графит), так и соединения (углекислый газ, различные карбонаты, метан и другие углеводороды в составе природного газа и нефти). Массовая доля углерода в каменных углях доходит до 97 %.
Атом углерода в основном состоянии может образовать две ковалентных связи по обменному механизму, но в обычных условиях такие соединения не образуются. Атом углерода, переходя в возбужденное состояние, использует все четыре валентных электрона.
Углерод образует довольно много аллотропных модификаций (см. рис. 16.2). Это алмаз, графит, карбин, различные фуллерены.

В неорганических веществах степень окисления углерода +II и +IV. С такими степенями окисления углерода существуют два оксида.
Оксид углерода(II) – бесцветный ядовитый газ, без запаха. Тривиальное название – угарный газ. Образуется при неполном сгорании углеродсодержащего горючего. Электронное строение его молекулы см. на стр. 121. По химическим свойствам CO несолеобразующий оксид, при нагревании проявляет восстановительные свойства (восстанавливает до металла многие оксиды не очень активных металлов).
Оксид углерода(IV) – бесцветный газ без запаха. Тривиальное название – углекислый газ. Кислотный оксид. В воде малорастворим (физически), частично реагирует с ней, образуя угольную кислоту H2CO3(молекулы этого вещества существуют только в очень разбавленных водных растворах).
Угольная кислота – кислота очень слабая, двухосновная, образует два ряда солей (карбонаты и гидрокарбонаты). Большинство карбонатов нерастворимо в воде. Из гидрокарбонатов как индивидуальные вещества существуют только гидрокарбонаты щелочных металлов и аммония. И карбонат-ион, и гидрокарбонат-ион – частицы основания, поэтому и карбонаты, и гидрокарбонаты в водных растворах подвергаются гидролизу по аниону.
Из карбонатов наибольшее значение имеют карбонат натрия Na2CO3 (сода, кальцинированная сода, стиральная сода), гидрокарбонат натрия NaHCO3 (питьевая сода, пищевая сода), карбонат калия K2CO3(поташ) и карбонат кальция CaCO3 (мел, мрамор, известняк).
Качественная реакция на присутствие в газовой смеси углекислого газа: образование осадка карбоната кальция при пропускании исследуемого газа через известковую воду (насыщенный раствор гидроксида кальция) и последующее растворение осадка при дальнейшем пропускании газа. Протекающие реакции:

Ca2 + 2OH +CO2 = CaCO3 + H2O;
CaCO3 + CO2 + H2O = Ca2 +2HCO3 .

В фармакологии и медицине широко используются различные соединения углерода - производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) - для лечения кожных заболеваний; радиоактивные изотопы углерода - для научных исследований (радиоуглеродный анализ).

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является СО 2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возвращением в атмосферу, либо захоронением в виде угля или нефти.

Аналитические реакции карбонат - иона СО 3 2-

Карбонаты - соли нестабильной, очень слабой угольной кислоты Н 2 СО 3 , которая в свободном состоянии в водных растворах неустойчива и разлагается с выделением СО 2: Н 2 СО 3 -- СО 2 + Н 2 О

Карбонаты аммония, натрия, рубидия, цезия растворимы в воде. Карбонат лития в воде мало растворим. Карбонаты остальных металлов мало растворимы в воде. Гидрокарбонаты растворяются в воде. Карбонат - ионы в водных растворах бесцветны, подвергаются гидролизу. Водные растворы гидрокарбонатов щелочных металлов не окрашиваются при прибавлении к ним капли раствора фенолфталеина, что позволяет отличить растворы карбонатов от растворов гидрокарбонатов (фармакопейный тест).

1.Реакция с хлоридом бария.

Ва 2+ + СОз 2 - -> ВаСО 3 (белый мелкокристаллический)

Аналогичные осадки карбонатов дают катионы кальция (СаСО 3) и стронция (SrCO 3). Осадок растворяется в минеральных кислотах и в уксусной кислоте. В растворе H 2 SO 4 образуется белый осадок BaSO 4 .

К осадку медленно, по каплям прибавляют раствор НС1 до полного растворения осадка: ВаСОз + 2 НС1 -> ВаС1 2 + СО 2 + Н 2 О

2.Реакция с сульфатом магния (фармакопейная).

Mg 2+ + СОз 2 - ->MgCO 3 (белый)

Гидрокарбонат - ион НСО 3 - образует с сульфатом магния осадок MgCO 3 только при кипячении: Mg 2+ + 2 НСОз- -> MgCO 3 + СО 2 + Н 2 О

Осадок MgCO 3 растворяется в кислотах.

3. Реакция с минеральными кислотами (фармакопейная).

СО 3 2- + 2 Н 3 О = Н 2 СО 3 + 2Н 2 О

НСО 3 - + Н 3 О + = Н 2 СО 3 + 2Н 2 О

Н 2 СО 3 -- СО 2 + Н 2 О

Выделяющийся газообразный СО 2 обнаруживают по помутнению баритоновой или известковой воды в приборе для обнаружения газов, пузырьков газа (СО 2), в пробирке - приемнике - помутнение раствора.

4.Реакция с гексацианоферратом (II) уранила.

2СО 3 2 - + (UО 2) 2 (коричневы)-> 2 UO 2 CO 3 (бесцветный) + 4 -

Коричневый раствор гексацианоферрата (II) уранила получают, смешивая раствор ацетата уранила (CH 3 COO) 2 UO 2 с раствором гексацианоферрата (II) калия:

2(СН 3 СОО) 2 ГО 2 + K 4 -> (UO 2) 2 + 4 СН 3 СООК

К полученному раствору прибавляют по каплям раствор Na 2 CO 3 или К 2 СО 3 при перемешивании до исчезновения коричневой окраски.

5.Раздельное открытие карбонат - ионов и гидрокарбонат - ионов реакциями с катионами кальция и с аммиаком.

Если в растворе одновременно присутствуют карбонат - ионы и гидрокарбонат - ионы, то каждый из них можно открыть раздельно.

Для этого вначале к анализируемому раствору прибавляют избыток раствора СаС1 2 . При этом СОз 2 - осаждаются в виде СаСО 3:

СОз 2 - + Са 2+ = СаСО 3

Гидрокарбонат - ионы остаются в растворе, так как Са(НСО 3) 2 растворами в воде. Осадок отделяют от раствора и к последнему добавляют раствор аммиака. НСО 2 - -анионы с аммиаком и катионами кальция дают снова осадок СаСО 3: НСО з - + Са 2+ + NH 3 -> СаСОз + NH 4 +

6. Другие реакции карбонат - иона.

Карбонат - ионы при реакции с хлоридом железа (III) FeCl 3 образуют бурый осадок Fe(OH)CO 3 , с нитратом серебра - белый осадок карбоната серебра Ag 2 CO3, растворимый в НЪТОз и разлагающийся при кипячении в воде до темного осадка Ag 2 O иСО 2: Ag 2 CO 3 -> Ag 2 O + СО 2

Аналитические реакции ацетат - иона CH 3 COO"

Ацетат - ион СН 3 СОО- - анион слабой одноосновной уксусной кислоты СН 3 СООН: в водных растворах бесцветен, подвергается гидролизу, не обладает окислительно -восстановительными свойствами; довольно эффективный лиганд и образует устойчивые ацетатные комплексы с катионами многих металлов. При реакциях со спиртами в кислой среде дает сложные эфиры.

Ацетаты аммония, щелочных и большинства других металлов хорошо растворяется в воде. Ацетаты серебра CH 3 COOAg и ртути (I) менее ацетатов других металлов растворимы в воде.

1.Реакция с хлоридом железа (III) (фармакопейная).

При рН = 5-8 ацетат - ион с катионами Fe(III) образует растворимый темно - красный (цвета крепкого.чая) ацетат или оксиацетат железа (III).

В водном растворе он частично гидролизуется; подкисление раствора минеральными кислотами подавляет гидролиз и приводит к исчезновению красной окраски раствора.

3 СНзСООН + Fe --> (CH 3 COO) 3 Fe + 3 Н +

При кипячении из раствора выпадает красно-бурый осадок основного ацетата железа (III):

(CH 3 COO) 3 Fe + 2 Н 2 О <- Fe(OH) 2 CH 3 COO + 2 СН 3 СООН

В зависимости от соотношений концентраций железа (III) и ацетат - ионов состав осадка может изменяться и отвечать, например, формулам: Fe ОН (СН 3 СОО) 2 , Fe 3 (OH) 2 O 3 (CH 3 COO), Fe 3 О (ОН)(СН 3 СОО) 6 или Fe 3 (OH) 2 (СН 3 СОО) 7 .

Проведению реакции мешают анионы СО 3 2 -, SO 3 "-, РО 4 3 -, 4 , образующие осадки с железом (III), а также анионы SCN- (дающие красные комплексы с катионами Fe 3+), иодид - ион Г,окисляющийся до йода 1 2 , придающего раствору желтую окраску.

2.Реакция с серной кислотой.

Ацетат - ион в сильно кислой среде переходит в слабую уксусную кислоту, пары которой имеют характерный запах уксуса:

СН 3 СОО- + Н + <- СН 3 СООН

Проведению реакции мешают анионы NO 2 \ S 2 -, SO 3 2 -, S 2 O 3 2 -, также выделяющие в среде концентрированной H 2 SO4 газообразные продукты с характерным запахом.

3.Реакция образования уксусноэтилового эфира (фармакопейная).

Реакцию проводят в сернокислой среде. С этанолом:

СН 3 СОО- + Н + -- СН 3 СООН СН 3 СООН + С 2 Н 5 ОН = СН 3 СООС 2 Н 4 + Н 2 О

Выделяющийся этилацетат обнаруживают по характерному приятному запаху. Соли серебра катализируют эту реакцию, поэтому при ее проведении рекомендуется добавлять небольшое количество AgNO 3 .

Аналогично при реакции с амиловым спиртом С 5 НцОН образуется также обладающий приятным запахом амилацетат СН 3 СООС 5 Ни (-грушевая-) Ощущается характерный запах этилацетата, усиливающийся при осторожном нагревании смеси.

Аналитические реакции тартрат - иона РОС- СН(ОН) - СН(ОН) - СОСТ. Тартрат- ион - анион слабой двухосновной винной кислоты:

НО-СН-СООН

НО -СН- СООН

Тартрат - ион хорошо растворим в воде. В водных растворах тартрат - ионы бесцветны, подвергаются гидролизу, склонны к комплексообразованию, давая устойчивые тартратные комплексы с катионами многих металлов. Винная кислота образует два ряда солей – средние тартраты, содержащие двух зараядный тартрат – ион СОСН(ОН)СН(ОН)СОО - , и кислые тартраты – гидротартраты, содержащие однозарядный гидротартрат – ион НОООСН(ОН)СН(ОН)СОО - . Гидротартрат калия (-винный камень-) КНС 4 Н 4 О 6 практически не растворм в воде, что используется для открытия катионов калия. Средняя кальциевая соль также мало растворима в воде. Средняя калиевая соль К 2 С 4 Н 4 О 6 хорошо растворяется в воде.

I. Реакция с хлоридом калия (фармакопейная).

С 4 Н 4 О 6 2 - + К + + Н + -> КНС 4 Н 4 О 6 1 (белый)

2. Реакция с резорцином в кислой среде (фармакопейная).

Тартраты при нагревании с резорцином мета - С 6 Н 4 (ОН) 2 в среде концентрированной серной кислоты образуют продукты реакции вишнево - красного цвета.

14) Реакции с аммиачным комплексом серебра. Выпадает черный осадок металлического серебра.

15) Реакция с сульфатом железа (II) и пероксидом водорода.

Прибавление разбавленного водного раствора FeSO 4 и Н 2 О 2 к раствору, содержащему тартраты. приводит к образованию к образованию неустойчивого комплекса железа жатого цвета. Последующая обработка раствором щелочи NaOH приводит к кяншиовению комплекса голубого цвета.

Аналитические реакции оксалат- иона С 2 О 4 2-

Оксалат- ион С 2 О 4 2- - анион двухосновной щавелевой кислоты Н 2 С 2 О 4 средней силы, сравнительно хорошо растворимой в воде. Оксалат- ион в водных растворах бесцветен, частично гидролизуется, сильный восстановитель, эффективный лиганд -образует устойчивые оксалатные комплексы с катионами многих металлов. Оксалаты щелочных металлов, магния и аммония растворяются в воде, а других металлов мало растворимы в воде.

1Реакция с хлоридом бария Ва 2+ + С 2 О 4 2- = ВаС 2 О 4 (белый) Осадок растворяется в минеральных кислотах и в уксусной кислоте (при кипячении). 2. Реакция с хлоридом кальция (фармакопейная): Са 2+ + С 2 О 4 2 - = СаС 2 О 4 (белый)

Осадок растворяется в минеральных кислотах, но не растворяется в уксусной кислоте.

3. Реакция с нитратом серебра.

2 Ag + + С 2 О 4 2 - -> Ag2C2O 4 .|.(творожистый) Проба на растворимость. Осадок делят на 3 части:

а). В первую пробирку с осадком прибавляют по каплям при перемешивании раствор HNO 3 до растворения осадка;

б). Во вторую пробирку с осадком прибавляют по каплям при перемешивании концентрированный раствор аммиака до растворения осадка; в). В третью пробирку с осадком прибавляют 4-5 капель раствора НС1; в пробирке остается белый осадок хлорида серебра:

Ag 2 C 2 O 4 + 2 НС1 -> 2 АС1 (белый) + Н 2 С 2 О 4

4.Реакция с перманганатом калия. Оксалат ионы с КМпО 4 в кислой среде окисляются с выделением СО 2 ; раствор КМпО 4 при этом обесцвечивается вследствие восстановления марганца (VII) до марганца (II):

5 С 2 О 4 2 - + 2 МпО 4 " + 16 Н + -> 10 СО 2 + 2 Мп 2+ + 8 Н 2 О

Разбавленный раствор КМпО 4 . Последний обесцвечивается; наблюдается выделение пузырьков газа - СО 2 .

38 Элементы группы VA

Общая характеристика VA группы Периодической системы. в виде s x p y электронная конфигурацию внешнего энергетического уровня элементов VA группы.

Мышьяк и сурьма имеют разные аллотропные модификации: как с молекулярной, так и с металлической кристаллической решеткой. Однако на основании сравнения устойчивости катионных форм (As 3+ , Sb 3+) мышьяк относят к неметаллам, а сурьму к металлам.

степени окисления устойчивые для элементов VA группы

От азота к висмуту (с уменьшением неметаллических свойств):

w уменьшается устойчивость отрицательной степени окисления (-3) (м. свойства водородных соединений)

w уменьшается устойчивость высшей положительной степени окисления (+5)

w увеличивается устойчивость низкой положительной степени окисления (+3)



Loading...Loading...